PENGARUH SUHU RUANG PELEBURAN DAN TEKANAN GAS ALIR TERHADAP OUTPUT SERBUK TIMAH YANG DIHASILKAN DARI SISTEM ATOMISASI GAS ARGON PANAS

  • Abdul Basyir Pusat Penelitian Fisika, Lembaga Ilmu Pengetahuan Indonesia
  • Didik Aryanto Pusat Penelitian Fisika, Lembaga Ilmu Pengetahuan Indonesia
  • Agus Sukarto Wismogroho Pusat Penelitian Fisika, Lembaga Ilmu Pengetahuan Indonesia
  • Wahyu Bambang Widayatno Pusat Penelitian Fisika, Lembaga Ilmu Pengetahuan Indonesia

Abstract

Abstrak

Serbuk timah merupakan komponen utama dalam pembuatan pasta solder. Salah satu requirement dari serbuk yang diperlukan adalah ukuran partikel serbuk maksimal 45 mikron. Dimana semakin kecil ukuran dari partikel serbuk timah dalam komposisi pasta solder tersebut, maka harga dari pasta solder akan semakin meningkat. Salah satu metode yang dapat dilakukan untuk menghasilkan serbuk timah adalah atomisasi gas. Tujuan dari penelitian ini untuk menambah pengetahuan tentang pengaruh dari tekanan dan suhu dari ruang peleburan terhadap ukuran dari output serbuk timah yang dihasilkan. Eksperimen dari penelitian ini menggunakan desain sistem atomisasi gas panas, dengan media gas berupa argon. Hasil penelitian dengan menggunakan desain sistem atomisasi gas ini, menunjukkan bahwa suhu ruang peleburan timah dan tekanan gas alir saat atomisasi mempengaruhi distribusi ukuran dari partikel serbuk timah yang dihasilkan, semakin tinggi suhu ruang peleburan dan tekanan gas alir yang digunakan, maka ukuran partikel serbuk timah yang dihasilkan akan semakin kecil.

Kata-kata kunci: Serbuk; Atomisasi Gas Argon Panas; Tekanan Gas Alir; Suhu Ruang Peleburan.

Abstract

The tin powder is a major component in making solder paste. One of the requirements of the required powder was a maximum particle size of 45 microns. The composition of solder paste with a smaller particle size has a higher price. One method that can be used to produced tin powder was gas atomization. Furthermore, the purpose of this research was to increase knowledge regarding the effect of chamber melting temperature and gas flow pressure on the particle size of tin powder output. The experiment of this research was using the design of the hot gas atomization system, with the gas type is argon. The results of the research showed that the chamber melting temperature and gas flow pressure have an effect on the particle size of the tin powder. Where the higher chamber melting temperature was producing the smaller particle size of tin powder. So do with the gas flow rate pressure parameter, the higher gas flow rate pressure was generating the smaller particle size of tin powder, but for this case, when using gas flow pressure about 20 bar, it was happening the backpressure phenomenon. It was caused by the nozzle design of this gas atomization system.

Keywords: Powder; Hot Argon Gas Atomization; Gas Flow Pressure; Chamber Melting Temperature.

References

S. Cheng, C. M. Huang, and M. Pecht, A review of lead-free solders for electronics applications, Microelectronics Reliability 75 (2017), 77-95.

K. Kassym and A. Perveen, Atomization processes of metal powders for 3D printing, Materialstoday: Proceedings (2020), 1-7.

R. Li et al, Fabrication of fine-grained spherical tungsten powder by radio frequency (RF) inductively coupled plasma spheroidization combined with jet milling, Advanced Powder Technology 28 (2017), 3158-3163.

T. C. Lin et al., Optimization of gas atomization processes in production of ultra-fine solder powder, Proceeding ICLASS (2006), 1-8.

L. V. M. Antony and R. G. Reddy, Processes for production of high-purity metal powders, JOM 55 (3) (2003), 14-18.

J. Tang, Y. Nie, Q. Lei, and Y. Li, Characteristics and atomization behavior of Ti-6Al-4V powder produced by plasma rotating electrode process, Advanced Powder Technology 30 (2019), 2330-2337.

S. Lagutkin et al., Atomization process for metal powder, Materials Science and Engineering A 383 (2004), 1-6.

L. Achelis and V. Uhlenwinkel, Characteritation of metal powders generated by a pressure-gas-atomiser, Materials Science & Engineering A 477 (2008) 15-20.

K. Minagawa et al., Production of fine spherical lead-free solder powders by hybrid atomization, Scence and Technology of Advanced Materials 6 (2005) 325-329.

M. Entezarian et al., Plasma atomization: a new process for the production of fine, spherical powders, JOM 48 (1996), 53-55.

L. Zhang et al, A comparative inverstigation on MIM418 superalloy fabricated using gas- and water- atomized powders, Powder Technology 286 (2015), 798-806.

P. Sungkhaphaitoon, T. Plookphol, and S. Wisutmethangoon, Design and development of a centrifugal atomizer for producing zinc metal powder, International Journal of Applied Physics and Mathematics 2 (2012), 77-82.

I. E. Anderson and R. L. Terpstra, Progress toward gas atomization processing with increased uniformity and control, Materials Science and Engineering A326 (2002), 101-109.

S. Chen and B. Huang, Status and development of gas atomization for production of metal powders, Powder Metallurgy Technology 22 (2004), 297-302.

S. Ozbilen, A. Unal, and T. K. Sheppard, Influence of atomizing gases on the oxide-film morphology and thickness of aluminum powders, Oxidation of Metals 53 (2000), 1-23.

S. Ozbilen, Influence of atomising gas pressure on particle shape of Al and Mg powders, Powder Technology 102 (1999), 109-119.

W. G. Hopkins, Hot gas atomisation, Metal Powder Report 58 (2003), 53.

A. Unal, Effect of processing variables on particle size in gas atomization of rapidly solidified aluminium powders, Materials Science and Technology 3 (1987), 1029-1039.

S. Hussain et al., Effect of hot gas atomization on spary forming of steel tubes using a close-coupled atomizer (CCA), Journal of Materials Processing Technology 282 (2020), 1-8.

Published
2020-12-31
How to Cite
Basyir, A., Aryanto, D., Wismogroho, A. S., & Widayatno, W. B. (2020). PENGARUH SUHU RUANG PELEBURAN DAN TEKANAN GAS ALIR TERHADAP OUTPUT SERBUK TIMAH YANG DIHASILKAN DARI SISTEM ATOMISASI GAS ARGON PANAS. PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL), 9(1). https://doi.org/10.21009/03.SNF2020.01.FA.05