EFEK PENAMBAHAN ALUMINIUM TERHADAP KETAHANAN OKSIDASI TEMPERATUR TINGGI PADUAN LOGAM FERROSILICON-MAGNESIUM

  • Lusita Lusita 1Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, DKI Jakarta, Indonesia
  • Bambang Hermanto Pusat Penelitian Fisika, Lembaga Ilmu Pengetahuan Indonesia (LIPI), Kompleks Puspiptek Gedung 440-442, Serpong, Tangerang Selatan, Banten, Indonesia
  • Anggara Budi Susila Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, DKI Jakarta, Indonesia
  • Toto Sudiro Pusat Penelitian Fisika, Lembaga Ilmu Pengetahuan Indonesia (LIPI), Kompleks Puspiptek Gedung 440-442, Serpong, Tangerang Selatan, Banten, Indonesia

Abstract

Abstrak

Paduan Fe-Si-Mg-Al dengan variasi komposisi ferrosilicon-magnesium dan Al yaitu [A] 100(Fe-Si-Mg); [B] 97,79(Fe-Si-Mg)-2,21Al; [C] 94,79(Fe-Si-Mg)-5,27Al; dan [D] 89,16(Fe-Si-Mg)-10,84Al telah disintesa menggunakan teknik metalurgi serbuk. Struktur dan ketahanan oksidasi dari paduan logam Fe-Si-Mg-Al dengan atau tanpa penambahan Al dipelajari menggunakan X-ray Diffractometer (XRD) untuk mengetahui fasa yang terbentuk, Scanning Electron Microscope-Energy Dispersive X-ray Spectrometer (SEM-EDS) untuk menganalisa morfologi dan sebaran elemen serta komposisi paduan, dan uji oksidasi dilakukan di dalam muffle furnace pada temperatur 800oC untuk mengevaluasi ketahanan oksidasi paduan logam pada suhu tinggi. Hasil XRD dan SEM-EDS menunjukkan bahwa paduan logam Fe-Si-Mg-Al telah berhasil disintesa. Sebelum oksidasi, paduan ini tersusun atas fasa Si, FeSi, α-FeSi2, dan β-FeSi2, sedangkan setelah oksidasi paduan terdiri dari fasa Si, FeSi, α-FeSi2, β-FeSi2, Fe2O3 dan lapisan SiO2 bergantung pada komposisi masing-masing paduan logam. Setiap komposisi menunjukkan ketahanan oksidasi yang berbeda. Ketahanan oksidasi paduan logam Fe-Si-Mg cenderung meningkat dengan penambahan Al dengan nilai optimum adalah 2,2%at.

Kata-kata kunci: paduan logam, Fe-Si-Mg-Al, metalurgi serbuk, oksidasi.

Abstract

Fe-Si-Mg-Al alloys with composition variation of ferrosilicon-magnesium and Al such as 100(Fe-Si-Mg), 97.79(Fe-Si-Mg)-2.21Al, 94.79(Fe-Si-Mg)-5.27Al, and 89.16(Fe-Si-Mg)-10.84Al were prepared using a powder metallurgy techniques. The structure and oxidation resistance of the Fe-Si-Mg-Al alloys with or without the Al addition were studied using X-ray Diffractometer (XRD) to determine the phases formed, Scanning Electron Microscope-Energy Dispersive X-ray Spectrometer (SEM-EDS) to determine morphology, element distribution and composition, and oxidation test was carried out in muffle furnace at 800ºC for 8 cycles to determine the high temperature oxidation resistance of the Fe-Si-Mg-Al alloys. The results of XRD an SEM-EDS show that the Fe-Si-Mg alloys were successfully synthesized. The Fe-Si-Mg-Al alloy before oxidation consists of Si, FeSi, α-FeSi2, dan β-FeSi2phases, whereas after oxidation new phases of Fe2O3 and SiO2scale are formed. Each composition shows different oxidation resistance. The oxidation resistance of Fe-Si-Mg alloys increases with the optimum aluminum concentration which is about 2,2at%..

Keywords: alloys, Fe-Si-Mg-Al, powder metallurgy, oxidation

References

K. Kurokawa, T. Sudiro, T. Sano, S. Kyo, O. Ishibashi, dan M. Nakamori, “High-temperature corrosion resistance of SiO2-forming materials,” Corrosion Reviews, vol. 36, no. 1, hlm. 65–74, Feb 2018, doi: 10.1515/corrrev-2017-0069.

G. W. Meetham dan M. H. Van de Voorde, “Requirements of High Temperature Materials,” dalam Materials for High Temperature Engineering Applications, Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, hlm. 19–34.

T. Gao, Z. Li, Y. Zhang, J. Qin, dan X. Liu, “Evolution of Fe–rich phases in Mg melt and a novel method for separating Al and Fe from Al–Si–Fe alloys,” Materials & Design, vol. 134, hlm. 71–80, Nov 2017, doi: 10.1016/j.matdes.2017.08.029.

W. Gao dkk., “Investigation of hollow bimetal oxide nanomaterial and their catalytic activity for selective oxidation of alcohol,” Molecular Catalysis, vol. 448, hlm. 63–70, Apr 2018, doi: 10.1016/j.mcat.2018.01.028.

T. Sudiro, T. Sano, S. Kyo, O. Ishibashi, M. Nakamori, dan K. Kurokawa, “A Comparative Study of High Temperature Corrosion of Al2O3, SiO2 and Al2O3–SiO2 Forming Alloys in a Na2SO4–NaCl Atmosphere,” Oxid Met, vol. 80, no. 5–6, hlm. 589–597, Des 2013, doi: 10.1007/s11085-013-93 98-7.

G. Gustafsson, T. Thorvaldsson, dan G. L. Dunlop, “The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloys,” MTA, vol. 17, no. 1, hlm. 45–52, Jan 1986, doi: 10.1007/BF02644441.

Kelly, dkk. “Material Selection Consideration for Thermal Process Equipment.” U.S. Departement of Energy, 2004.

H. Tanihata, T. Sugawara, K. Matsuda, dan S. Ikeno, “Effect of casting and homogenizing treatment conditions on the formation of Al–Fe–Si intermetallic compounds in 6063 Al–Mg–Si alloys,” hlm. 2.

K. Kinoshita, K. Yamada, dan H. Matsutera, “Reactive Ion Etching of Fe-Si-A1 Alloy for Thin Film Head,” hlm. 3.

S. Yoshida, M. Sato, E. Sugawara, dan Y. Shimada, “Permeability and electromagnetic-interference characteristics of Fe–Si–Al alloy flakes–polymer composite,” Journal of Applied Physics, vol. 85, no. 8, hlm. 4636–4638, Apr 1999, doi: 10.1063/1.370432.

S. J. Andersen, H. W. Zandbergen, J. Jansen, C. Tráholt, U. Tundal, dan O. Reiso, “The crystal structure of the B0 phase in Al-Mg-Si alloys,” hlm. 16.

G. A. Edwards, K. Stiller, G. L. Dunlop, dan M. J. Couper, “The precipitation sequence in Al–Mg–Si alloys,” Acta Materialia, vol. 46, no. 11, hlm. 3893–3904, Jul 1998, doi: 10.1016/S1359-6454(98)00059-7.

Y. L. Liu, S. B. Kang, dan H. W. Kim, “The complex microstructures in an as-cast Al–Mg–Si alloy,” Materials Letters, vol. 41, no. 6, hlm. 267–272, Des 1999, doi: 10.1016/S0167-577X(99)00141-X.

K.-S. Park dan Y. Kim, “Processing of SiO2 Protective Layer Using HMDS Precursor by Combustion CVD,” J. Nanosci. Nanotech., vol. 11, no. 8, hlm. 7265–7268, Agu 2011, doi: 10.1166/jnn.2011.4818.

I. O. Wilson, “Magnesium oxide as a high-temperature insulant,” IEE Proc. A Phys. Sci. Meas. Instrum. Manage. Educ. Rev. UK, vol. 128, no. 3, hlm. 159, 1981, doi: 10.1049/ip-a-1.1981.0026.

S. Kumar dan K. A. Q. O’Reilly, “Influence of Al grain structure on Fe bearing intermetallics during DC casting of an Al-Mg-Si alloy,” Materials Characterization, vol. 120, hlm. 311–322, Okt 2016, doi: 10.1016/j.matchar.2016.09.017.

C. Kloc, M. Wendl, H. Hohl, U. Malang, dan E. Bucher, “Preparation and properties of FeSi, a-FeSi2 and b-FeSi2 single crystals,” hlm. 4.

A. M. Nymark, “Oxidation of silicon powder in humid air,” hlm. 122, Jun 2012.

Van de Voorde, M. H., & Betteridge, W. (1991). High-temperature materials and industrial applications. EUR 8841 1983; Euro. Abstr. Sect. I, 22(3), 22.

Published
2020-12-31
How to Cite
Lusita, L., Hermanto, B., Susila, A. B., & Sudiro, T. (2020). EFEK PENAMBAHAN ALUMINIUM TERHADAP KETAHANAN OKSIDASI TEMPERATUR TINGGI PADUAN LOGAM FERROSILICON-MAGNESIUM. PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL), 9(1). https://doi.org/10.21009/03.SNF2020.01.FA.11