DOI: doi.org/10.21009/SPEKTRA.043.01

ANALYSIS OF STRUCTURE AND ANTIMICROBIAL ACTIVITY OF CeO₂ AND Nd₂O₃ NANOPARTICLES

Hanif Yuliani^{1,*}, Rina Dewi Mayasari¹, Eryanti Kalembang¹, Yelvia Deni¹, Defi Rahma Santi², Putri Widya Pangestika², Setyo Purwanto³, Bambang Sugeng⁴, Suyanti⁴, Moch. Setyadji⁴

¹Pusat Teknologi Material, Badan Pengkajian dan Penerapan Teknologi, Gedung 224, Puspiptek, Tangerang Selatan, Banten 15314, Indonesia

²Program Studi Fisika, Institut Teknologi Kalimantan, Jl. Soekarno-Hatta Km 15, Balikpapan, Kalimantan Timur 76127, Indonesia

³Pusat Sains dan Teknologi Bahan Maju, Badan Tenaga Nuklir Nasional, Gedung 42, Puspiptek, Tangerang Selatan, Banten 15314, Indonesia

⁴Pusat Sains dan Teknologi Akselerator, Badan Tenaga Nuklir Nasional, Jl. Babarsari, Yogyakarta 55281, Indonesia

*Corresponding Author Email: hanif.yuliani@bppt.go.id

Received: 29 June 2019 Revised: 4 December 2019 Accepted: 13 December 2019 Published: 31 December 2019

SPEKTRA: Jurnal Fisika dan Aplikasinya p-ISSN: 2541-3384 e-ISSN: 2541-3392

ABSTRACT

Cerium oxide (CeO₂) and Neodymium oxide (Nd₂O₃) nanoparticles using local content have been synthesized by precipitation method. The CeO₂ and Nd₂O₃ nanoparticles were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) to analyze the material phase and structure. The XRD spectrum shows that CeO₂ and Nd₂O₃ nanoparticles have face-centered cubic and hexagonal, and cubic, respectively. The anti-microbial activity of CeO₂ and Nd₂O₃ nanoparticles was analyzed by diffusion method using gram-negative bacteria (E. coli, S. aureus, P. aeruginosa), and gram-positive bacteria (S. entericatyphi, L. monocyogenes), and fungus (C. albicans). The result confirms that CeO₂ and Nd₂O₃ nanoparticles have the capability of microbial pathogen inhibition. The CeO₂ nanoparticles have the effective activities of inhibition for the microbial of S. aureus and S. entericatyphi, whereas Nd₂O₃ nanoparticles can inhibit the microbial of P. aeruginosa, S. entericatyphi, and L. monocyogenes.

Keywords: CeO₂, Nd₂O₃, face-centered cubic, hexagonal, antimicrobe

Check for updates

INTRODUCTION

Nowadays, nanotechnology, primarily nanomaterials research and development, has been widely used for various applications in daily life, such as medicine and food [1], sensors [2], energy [3], and others. In the medicine application, the nanomaterials developed for antibiotic or antifungal applications, mainly based on rare earth elements (REE) as the raw materials [4]. Indonesia has a lot of natural resources of cerium oxide (CeO₂) and neodymium oxide (Nd₂O₃) classified in REE [5]. The CeO₂ and Nd₂O₃ have great potential to produce new various antibiotics [6-8].

Several previous studies have reported anti-microbial activity on REE nanomaterials [6-7,9]. Parvathya and Venkatramanb have investigated the differences in the synthesis methods due to the antimicrobial activity, i.e., green synthesis (G-CeO₂) and chemical synthesis (C-CeO₂). The results showed that G-CeO₂ nanoparticles had higher activity than C-CeO₂ against Escherichia coli, Pseudomonas aeruginosa, Streptococcus pneumonia, and Proteus Vulgaris bacteria [7]. The CeO₂ nanoparticles also obtain a good antibacterial activity towards both gram-negative and positive bacteria because it has Ce³⁺ ions and rich surface oxygen vacancies [8].

In this paper, we reported the materials properties and anti-microbial activities of CeO_2 and Nd_2O_3 nanoparticles. Anti-microbial activities of the nanoparticles were tested with six types of microbes, i.e., Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella entericatyphi, Listeria monocytogenes, and Candida albicans. The results of this research are the preliminary study of REE research for antibiotic applications which are expected to be new potential antibiotics.

METHOD

Synthesis of CeO₂ and Nd₂O₃ Nanoparticles

The CeO₂ and Nd₂O₃ nanoparticles have been synthesized in the Laboratory of Center of Technology for Material BPPT by precipitation method using carbonate (NaHCO₃) and hydroxide (NH₄OH) precursors. Synthesis of nano-CeO₂ was carried out using 0.03 M cerium nitrate hexahydrate (Ce(NO₃)₃.6H₂O), 0.02 M NH₄OH, and 0.03 M NaHCO₃. Those solutions were mixed at the temperature of 55°C for 15 minutes and followed by drying at the temperature of 220°C for 2 hours and calcination at the temperature of 600°C for 3 hours [10]. Synthesis of nano-Nd₂O₃ used the same synthesis process as nano-CeO₂ with neodymium nitrate hexahydrate (Nd(NO₃)₃.6H₂O) precursor.

Material Characterization and Anti-microbial Test

The material structures were characterized by *x-Ray diffraction* (XRD) Rigaku and *Fourier Transform Infra-red* (FTIR) Thermo Scientific Nicolet iS50. The anti-microbial activities of the samples were analyzed in the Laboratory of Microbiology, Center of Technology for Pharmaceutical and Medical BPPT, using well diffusion method against and six pathogen microbes (Candida albicans, Staphylococcus aureus, Listeria monocytogenes, Salmonella

entericatyphi, Escherichia coli, Pseudomonas aeruginosa) from the collection of the Inter-University Research Center (PAU) ITB. Kloramfenicol antibiotic was used simultaneously for positive control.

RESULT AND DISCUSSION

Crystal Structure of CeO₂ and Nd₂O₃ Nanoparticles

FIGURE 1 shows the X-ray diffraction (XRD) pattern of the samples of CeO₂ and Nd₂O₃ nanoparticles. Analysis of the XRD profile for nano-CeO₂ (bottom) using Match and Rietveld program reveals that the samples formed 58.5% CeO₂ phase (ICDD 98-002-8753) with face center cubic structure and space group of F m -3 m (225). Besides, the formed minor phase is 41.5% thermonatrite compound (Na₂CO₃·H₂O) with an orthorhombic structure and space group of P c a 21 (29).

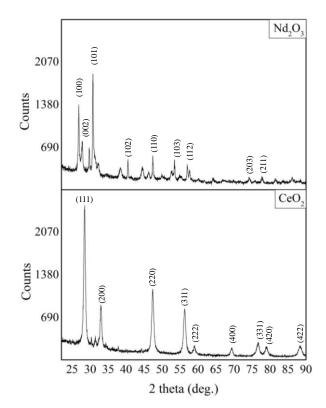


FIGURE 1. The XRD spectrum of CeO₂ and Nd₂O₃ Nanoparticles.

The data analysis of the XRD pattern for nano-Nd₂O₃ (top) indicates 2 (two) Nd₂O₃ phases, i.e., 39.6% Nd₂O₃ with cubic structure (ICDD 98-064-5664) and space group of I a -3 (206), and 25.4% Nd₂O₃ with hexagonal structure and space group of P 63/m m c (194) (ICDD 98-003-2514). The residues are the impurities of 11.9% *nitrate* (NaNO₃) phase with a space group of R -3 c (167) (ICDD 98-006-4868) and 23.1% *neodymium hydroxide* with a space group of P 63/m (176) (ICDD 98-000-0398).

Functional Group Analysis of CeO2 and Nd2O3 Nanoparticles

FIGURE 2 shows the result of FTIR analysis for both CeO₂ and Nd₂O₃ nanoparticles. The representation of FTIR absorbance peaks is summarized in TABLE 1. The FTIR result of nano-CeO₂ confirmed the XRD result in which the contained impurity is thermonatrite (Na₂CO₃·H₂O) compound at a wavenumber of 1107.61 cm⁻¹, 1429.28 cm⁻¹, 2360.79 cm⁻¹, and 2978.71 cm⁻¹ which represent the vibrational bond of C–O, C=O, and O–H, respectively. The CeO₂ compounds were detected at the wavenumber of 549.08 cm⁻¹, 616.97 cm⁻¹, and 864.20 cm⁻¹. The other FTIR spectrum of CeO₂ detected Ce-O stretching band at 475 cm⁻¹, 545 cm⁻¹, and 615 cm⁻¹ [11].

The FTIR result of nano-Nd₂O₃ also validated the XRD result in which nano-Nd₂O₃ has the same impurities, i.e., Sodium Nitrate (NaNO₃) at the wavenumber of 1367.82 cm⁻¹ and 1489.99 cm⁻¹ which denote the vibrational bond of N–O. Furthermore, the wavenumber of 3606.11 cm⁻¹ came from O–H bond of NdOH. Nd₂O₃ compounds were spotted at the wavenumber of 534.29 cm⁻¹, 667.53 cm⁻¹, and 856.77 cm⁻¹. The similar result of the FTIR spectrum in Nd₂O₃ have been reported by Yuvakkumar and Hong (2015) [8].

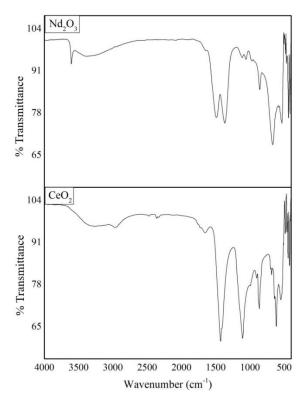


FIGURE 2. The FTIR spectrum of CeO2 and Nd2O3 Nanoparticles.

Compound	Wavenumber (cm ⁻¹)	Absorbance	Representation of functional group
CeO ₂	549.08	Ce – O	CeO ₂
	616.97	Ce - O Ce - O	CeO_2 CeO_2
	864.20		
	1107.61	$\mathbf{C} - \mathbf{O}$	$Na_2CO_3 \cdot H_2O$
	1429.28	$\mathbf{C} = \mathbf{O}$	$Na_2CO_3 \cdot H_2O$
	2360.79	O – H	$Na_2CO_3 \cdot H_2O$
	2978.71	O – H	Na ₂ CO ₃ ·H ₂ O
Nd_2O_3	534.9	Nd - O	Nd ₂ O ₃
	667.53	Nd – O Nd – O	Nd_2O_3 Nd_2O_3
	856.77	Mu = 0	Nu ₂ O ₃
	1489.99	$\mathbf{N} - \mathbf{O}$	NaNO ₃
	1367.82	$\mathbf{N} - \mathbf{O}$	NaNO ₃
	3606.11	O - H	NdOH

TABLE 1. The representation of the FTIR spectrum in the Nd₂O₃ and CeO₂ nanoparticles.

Anti-Microbial Activities of CeO2 and Nd2O3 Nanoparticles

The results of the anti-microbial activity test of nano-CeO₂, nano-Nd₂O₃, and positive control were summarized in TABLE 2. From the result analysis, nano-CeO₂ and nano-Nd₂O₃ have higher inhibition ability than Control + to against bacteria (Gram + and Gram -) and fungi.

Т с р.с.	Inhibition Zone Diameter (mm)		
Types of Microbes	Control (+)	CeO ₂	Nd ₂ O ₃
Candida albicans	0.34	3.00	1.33
Staphylococcus aureus	26.13	4.00	2.33
Listeria monocytogenes	9.99	3.00	3.67
Salmonella entericatyphi	4.72	4.00	5.67
Escherichia coli	14.54	0.67	3.00
Pseudomonas aeruginosa	3.58	4.28	3.67

TABLE 2. Anti-microbial activities of CeO2 and Nd2O3 nanoparticles.

Babenko et al. have reported inhibitory activity of nano-CeO2 towards Candida albicans, the interaction between nano-CeO₂ and fungi cell surface causes the irreversible change of cell structure and generate blocking capability for fungi enzymatic activity [11].

TABLE 3 shows the review of the inhibition test of nano-CeO₂ and nano-Nd₂O₃ against Gram + (*S. aureus*). The same result also has been researched by Reddy Yadaf et al. and Malleshappa et al. [13-14]. Meanwhile, TABLE 4 shows the inhibitory activity of nano-CeO₂ nano-Nd₂O₃

towards Gram – (*E. coli*). A similar result also has been obtained by Malleshappa et al. [14]. Moreover, the inhibitory activities of nano-CeO₂ and nano-Nd₂O₃ against Gram – (*P. aeruginosa*) have been reported by Ravishankar et al. [15], which have a comparable result of TABLE 5.

G ()	Inhibition Activity		
<i>S aureus</i> strain	Concentration (mg/mL)	Test Result	Referensi
NCIM-5022	10	1.67	[12]
	10	3.33	
NCIM-5022	10	0.53	[12]
	10	1.47	[13]
PAU ITB	10	4.00	Sample CeO ₂
	10	1.33	Sample Nd ₂ O ₃

TABLE 3. Anti-microbial activities of CeO₂ and Nd₂O₃ nanoparticles towards gram-positive (S. aureus) bacteria.

TABLE 4. Anti-microbial activities of CeO₂ and Nd₂O₃ nanoparticles towards gram-negative (E. coli) bacteria.

Inhibition Activity		
Concentration (mg/mL)	Test Result	Reference
10	2.67	[12]
10	4.67	[13]
10	0.67	CeO_2
10	3.00	Nd_2O_3
	Concentration (mg/mL) 10 10 10 10 10 10 10 10 10 10 10 10 10	Concentration (mg/mL) Test Result 10 2.67 10 4.67 10 0.67

TABEL 5. Anti-microbial activities of CeO_2 and Nd_2O_3 nanoparticles towards gram-negative (*P. aeruginosa*) bacteria.

D · / ·	Inhibition Activity		
<i>P aeruginosa</i> strain	Concentration (mg/mL)	Test Result	Reference
NCIM-2242	10	3.33	
	15	3.57	[4]
	20	4.50	
PAU ITB	10	4.28	CeO ₂
	10	3.67	Nd_2O_3

The anti-microbial mechanism of CeO_2 nanoparticles has been reported by Passos Farias et al. [4], microbial inhibition activity of CeO_2 nanoparticles is caused by the *oxidative stress* of microorganism cell membrane.

CONCLUSION

The CeO₂ and Nd₂O₃ nanoparticles have a high anti-microbial activity towards pathogen microbes, i.e., gram-positive bacteria (*Staphylococcus aureus, Listeria monocytogenes*), gram-negative bacteria (*Pseudomonas aeruginosa, Escherichia coli, Salmonella entericatyphi*), and fungi (*Candida albicans*).

ACKNOWLEDGMENT

We acknowledge to DIPA-BPPT for funding this research and to the Laboratory of Microbiology, Center of Technology for Pharmaceutical and Medical BPPT, for providing the facilities of the anti-microbial test.

REFERENCES

- B.S. Munteanu and C. Vasile, "Antioxidant, antibacterial/antifungal nanostructures for medical and food packaging applications", Journal of Nanoscience and Nanomedicine, Vol. 1, No. 1, pp. 15-20, 2017.
- [2] R. Nuryadi and R.D. Mayasari, "ZnO/Au-based surface plasmon resonance for CO₂ gas sensing application", Applied Physics A Materials Science & Processing, Springer Berlin Heidelberg, 122: 13, 2015.
- [3] Q. Zhang, E. Uchaker, S.L. Candelaria, and G. Cao, "Nanomaterials for energy conversion and storage", Chemical Society Reviews, Vol. 42, pp. 3127-71, 2013.
- [4] I. A. Passos Farias, C. C. Lima dos Santos, R. C. Sampaio, "Antimicrobial activity of cerium oxide nanoparticles on opportunistic microorganism: a systematic review", Hindawi, BioMed Research International, Article ID 1923606, pp. 1-14, 2018.
- [5] I. Setiawan, "Toward the challenging REE exploration in Indonesia", IOP Conf. Series: Earth and Environmental Science, Vol. 118, pp. 1-5, 2018.
- [6] S. Parvathya and B.R. Venkatramanb, "*Invitro* antibacterial and anticancer potential of CeO₂ nanoparticles prepared by co-precipitation and green synthesis method", Journal of Nanosciences: Current Research, Vol. 2, Issue 2, pp. 1-9, 2017.
- [7] K.M. Kumar, M. Mahendhiran, M.C. Diaz, N.H. Como, A.H. Eligio, G.T. Torres, S. Godavarthi, and L.M., Gomez, "Green synthesis of Ce³⁺ rich CeO₂ nanoparticles and its antimicrobial studies", Materials Letters, Vol. 214, pp. 15-19, 2018.
- [8] R. Yuvakkumar and S.I. Hong, "Nd₂O₃: novel synthesis and characterization, Journal of Sol-Gel Science and Technology, Vol. 73, pp. 511-7, 2015.
- [9] S. Alghool, M.S. Zoromba, and H.F.A. El-Halim, "Lanthanide amino acid Schiff base complexes: synthesis, spectroscopic characterization, physical properties and *in vitro* antimicrobial studies", Journal of Rare Earths, Vol. 31, No. 7, pp. 715-720, 2013.
- [10] M. Farahmandjou and M. Zarinkamar, "Synthesis of nano-sized ceria (CeO2) particles via a cerium hydroxy carbonate precursor and the effect of reaction temperature on particle morphology", Journal of Ultrafine Grained and Nanostructured Materials, Vol.48, No.1, pp. 5-10, 2015.
- [11] Y.A. Syed Khadar, A. Balamuruganb, V.P. Devarajana, R. Subramanianc, and S. Dinesh Kumar, "Synthesis, characterization and antibacterial activity of cobalt doped cerium oxide (CeO2:Co) nanoparticles by using hydrothermal method", Journal of Materials Research and Technology, Vo. 8, No. 1, pp. 267-74, 2019.
- [12] L.P. Babenko, N.M. Zholobak, A.B. Shcherbakov, S.I. Voychuk, L.M. Lazarenko, and M.Y. Spivak, "Antibacterial activity of cerium colloids against opportunistic microorganisms in vitro", Mikrobiolohichnyi zhurnal (Kiev, Ukraine : 1993), Vol. 74, No. 3, pp. 54-62, 2012.

- [13] L.S. Reddy Yadav, K. Manjunath, and B. Archana, "Fruit juice extract mediated synthesis of CeO₂ nanoparticles for antibacterial and photocatalytic activities," The European Physical Journal Plus, Vol. 131, No. 5, 2016.
- [14] J. Malleshappa, H. Nagabhushans, S.C. Sharma, Y.S. Vidya, K.S. Anantharaju, S.C. Prashantha, B.D. Prasad, H.R. Naika, K. Lingaraju, and B.S. Surendra, "Leucas aspera mediated multifuctional CeO₂ nanoparticles: structural, photoluminescent, photocatalytic and antibacterial properties", Spectrochimica Acta part A : Molecular and Biomolecular Spectroscopy, Vol. 49, pp. 452-62, 2015.
- [15] T. N. Ravishankar, T. Ramakrisshappa, G. Nagaraju, and H. Rajanaika, "Synthesis and characterization of CeO₂ nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies", Chemistry Open, Vol 4, No. 2, pp. 146-54, 2015.