SEED MEDIATED SYNTHESIS OF HEXAGONAL S-DOPED ZnO NANOROD AND ITS PHYSICAL PROPERTIES

  • Yolanda Rati Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau, Kampus Bina Widya, Jl. H.R Soebrantas, Km. 12,5 Sp. Baru 28293, Panam, Tampan, Pekanbaru, Riau, Indonesia
  • Akrajas Ali Umar Institute of Microengineering and Nanoelectronics, University Kebangsaan Malaysia , Bangi 43600, Selangor, Malaysia
  • Yanuar Hamzah Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau, Kampus Bina Widya, Jl. H.R Soebrantas, Km. 12,5 Sp. Baru 28293, Panam, Tampan, Pekanbaru, Riau, Indonesia
  • Ari Sulistyo Rini Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Riau, Kampus Bina Widya, Jl. H.R Soebrantas, Km. 12,5 Sp. Baru 28293, Panam, Tampan, Pekanbaru, Riau, Indonesia
Keywords: ZnO nanorod, sulfur doping, hexagonal, seed-mediated hydrothermal

Abstract

Sulfur-doped zinc oxide (S-ZnO) nanorod has been successfully synthesized via the seed-mediated hydrothermal method with different sulfur concentrations (0%, 1%, 2.5%). This research aims to study the influence of the concentration of sulfur on the structure, morphology, and optical properties of ZnO as a promising material in a wide range of applications.  Crystal structure, morphology, and optical properties of the samples were characterized using  X-Ray Diffraction (XRD), Field Emission Electron Scanning Microscopy (FESEM), and UV-Vis Spectroscopy, respectively. The XRD pattern shows the strongest peak at 2θ = 34.43° for crystal orientation of (002). The crystallinity properties of the S-ZnO sample are higher compared to the ZnO sample.  The FESEM images of the 1% S-ZnO sample exhibit the highest nanorod density arrangement. The optical absorbance of the higher sulfur dopant possesses a higher optical absorption peak on the UV-Vis spectrum. The results indicate that S doping to ZnO can alter the structural, morphological, and optical properties of ZnO.

References

L. C. Chen and Z. L. Tseng, “ZnO-Based Electron Transporting Layer for Perovskite Solar Cells,” Nanostructured Sol. Cells, pp. 203-215, February 2017.

E. Hidayanto, H. Sutanto, and K. S. Firdausi, “Pembuatan Lapisan Fotokatalis Zinc Oxide (ZnO) dengan Teknik Spray Coating dan Aplikasinya pada Pengering Jagung,” Berk. Fis, vol. 16, no. 4, pp. 119-124, 2013.

Z. Lin and J. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays Author(s): Zhong Lin Wang and Jinhui Song Source,” Science (80), vol. 312, no. 5771, pp. 242-246, 2006.

H. Morkoc and U. Ozgur, “Zinc Oxide: Fundamentals, Materials and Device Technology,” in Processing, Devices, and Heterostructures, Federal Republic ofGerman: WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 446-454, 2009.

M. Torabi et al., “We are IntechOpen, the world ’ s leading publisher of Open Access books Built by scientists, for scientists TOP 1 %,” Intech, vol. 1, no. tourism, p. 13, 2016.

O. Bayram et al., “Investigation of structural, morphological and optical properties of Nickel-doped Zinc oxide thin films fabricated by co-sputtering,” J. Mater. Sci. Mater. Electron, vol. 30, no. 4, pp. 3452-3458, 2019.

G. G. Rusu et al., “Preparation and characterization of Mn-doped ZnO thin films,” J. Optoelectron. Adv. Mater, vol. 12, no. 4, pp. 895-899, 2010.

I. Iwantono et al., “Enhanced charge transfer activity in Au nanoparticles decorated ZnO nanorods photoanode,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 111, pp. 44-50, 2019.

F. A. Garcés et al., “Structural Analysis of ZnO(: Al,Mg) Thin Films by X-ray Diffraction,” Procedia Mater. Sci, vol. 8, pp. 551–560, November 2015.

A. S. Alshammari et al., “Visible-light photocatalysis on C-doped ZnO derived from polymer-assisted pyrolysis,” RSC Adv, vol. 5, no. 35, pp. 27690-27698, 2015.

R. Jothi Ramalingam et al., “Synthesis, characterization and optical properties of sulfur and fluorine-doped ZnO nanostructures for visible light utilized catalysis,” Optik (Stuttg), vol. 148, pp. 325-331, 2017.

V. Kumari et al., “S-, N- and C-doped ZnO as semiconductor photocatalysts: A review,” Front. Mater. Sci, vol. 13, no. 1, pp. 1-11, 2019.

A. Khan et al., “A novel fabrication methodology for sulfur-doped ZnO nanorods as an active photoanode for improved water oxidation in visible-light regime,” Nanotechnology, vol. 28, no. 5, pp.1-9, 2017.

E. Maryanti, “Sintesis Mikro Partikel ZnO Terdoping Sulfur Alam ( ZnO : S ) Melalui Metode Mechanochemical,” pp. 137-142, 2013.

D. Polsongkram et al., “Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method,” Phys. B Condens. Matter, vol. 403, no. 19-20, pp. 3713-3717, 2008.

Y. Tao et al., “The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method,” J. Alloys Compd, vol. 489, no. 1, pp. 99-102, 2010.

Published
2021-04-30
How to Cite
Rati, Y., Umar, A. A., Hamzah, Y., & Rini, A. S. (2021). SEED MEDIATED SYNTHESIS OF HEXAGONAL S-DOPED ZnO NANOROD AND ITS PHYSICAL PROPERTIES. Spektra: Jurnal Fisika Dan Aplikasinya, 6(1), 19 - 24. https://doi.org/10.21009/SPEKTRA.061.03