ANALISIS TINGKAT KEHIJAUAN HUTAN DAERAH PERTAMBANGAN SAWAHLUNTO DENGAN METODE NDVI BERDASARKAN CITRA LANDSAT TAHUN 2006-2016

  • Bowo Eko Cahyono Fisika UNEJ
  • Yazella Feni Frahma Jurusan Fisika, Fakultas MIPA, Universitas Jember Jalan Kalimantan 37, Jember 68121
  • Agung Tjahjo Nugroho Jurusan Fisika, Fakultas MIPA, Universitas Jember Jalan Kalimantan 37, Jember 68121
Keywords: degradation, forest, landsat, NDVI, classification, Sawahlunto

Abstract

Abstrak

Pembukaan lahan hutan yang dijadikan lokasi pertambangan merupakan salah satu kegiatan yang dapat merubah jenis tutupan lahan atau sering disebut dengan konversi lahan. Salah satu daerah yang telah mengalami konversi lahan tersebut adalah Sawahlunto. Konversi lahan yang tidak menggunakan prinsip kelestarian lingkungan dapat mengakibatkan banyak hal negatif misalnya degradasi atau penurunan kualitas hutan. Tujuan dari penelitian ini adalah melakukan analisis tingkat degradasi hutan daerah pertambangan Sawahlunto tahun 2006 sampai 2016. Penelitian ini menggunakan teknologi penginderaan jauh berbasis citra satelit landsat. Citra satelit landsat ini diklasifikasikan dengan metode Normalized Difference Vegetation Index (NDVI) berdasarkan kerapatan vegetasi. Kemudian hasil klasifikasi ini dibuat dalam bentuk pemetaan. Klasifikasi pertama dikategorikan menjadi dua yakni hutan dan non hutan. Hasil yang didapatkan dari penelitian ini menunjukkan bahwa terjadi perubahan tutupan lahan yang semula hutan menjadi non hutan meningkat sebesar 7,5% selama kurun waktu sepuluh tahun. Klasifikasi selanjutnya yakni berdasarkan enam kategori yakni vegetasi sangat rapat, rapat, cukup rapat, non vegetasi 1, 2 dan 3. Dari klasifikasi ini, juga terlihat perubahan nilai NDVI maksimum maupun minimumnya. Tahun 2006 memiliki kisaran nilai NDVI maksimum 0,71 dan tahun 2016 memiliki kisaran nilai NDVI maksimum 0,56. Hal ini mengidentifikasi bahwa tingkat kehijauan yang ada di daerah pertambangan Sawahlunto menurun.

Kata Kunci : degradasi, hutan, landsat, ndvi, klasifikasi, Sawahlunto.

 Abstract

The clearing of forest land that is used as a mining site is one of the activities that can change the type of land cover or often called land conversion. One of the forest areas that convert the land is Sawahlunto. Conversion of land that does not use the principles of environmental sustainability can lead to many negative things one of which is the degradation. The purpose of this research is to analyze the level of forest degradation of Sawahlunto mining area in 2006 until 2016. This research uses a remote sen sing technology based on landsat satellite imagery. This landsat satellite image is classified by Normalized Difference Vegetation Index (NDVI) method based on vegetation density. Then the results of this classification is made in the form of mapping. The first classification is categorized into two namely forest and non forest. The results obtained from this study indicate that a change in land cover from forest to non-forest increased by 7.5% over a period of ten years. The next classification is based on six categories namely very dense vegetation, dense vegetation, fairly dense, non vegetation 1, 2 and 3. From this classification, also seen the change in NDVI maximum and minimum value. The year 2006 has a maximum NDVI value range of 0.71 and 2016 has a maximum NDVI value range of 0.56. This identifies that the existing greenness in the mining area of Sawahlunto is decreasing.

 Keyword : degradation, forest, landsat, ndvi, classification, Sawahlunto.

References

[1] G. B. Suprayoga, “Identitas Kota Sawahlunto Paska Kejayaan Pertambangan Batu Bara,” Jurnal Perencanaan Wilayah dan Kota, vol. 19 (2), pp. 1-21, 2 Agustus 2008, 2008.

[2] "Badan Pusat Statistik," Statistik Daerah Sawahlunto 2015, Badan Pusat Statistik Sawahlunto, 2015.

[3] B. A. Margono, S. Turubanova, I. Zhuravleva et al., “Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010,” Environmental Research Letters, vol. 7, pp. 1-16, 2012.

[4] E. A. T. Matricardi, D. L. Skole, M. A. Pedlowski et al., “Assessment of tropical forest degradation by selective logging and fire using Landsat imagery,” Remote Sensing of Environment, vol. 114 (5), pp. 1117-1129, 2010.

[5] D. Plugge, T. Baldauf, and M. Köhl, Reduced Emissions from Deforestation and Forest Degradation (REDD): Why a Robust and Transparent Monitoring, Reporting and Verification (MRV) System is Mandatory, Institute for World Forestry University of Hamburg, Hamburg, 2011.

[6] F. F. Sabins, Remote Sensing: Principles and Interpretation, 2nd ed., New York: W.H. Freeman and Company, 1987.

[7] T. M. Lillesand, and R. W. Keifer, Remote Sensing and Image Interpretation, 4th ed., New York: John Wiley & Sons, Inc, 2004.

[8] F. S. Al-Ahmadi, and A. S. Hames, “Comparison of Four Classification Methods to Extract Land Use and Land Cover from Raw Satellite Images for Some Remote Arid Areas, Kingdom of Saudi Arabia,” JKAU; Earth Sci, vol. 20 (1), pp. 167-191, 2009.

[9] J. Compton, Tucker, J. R. G. et al., “African Land-Cover Classification Using Satellite Data,” Science, vol. 227 (4685), 1985.

[10] H. Eva, and E. F. Lambin, “Fires and Land-Cover Change in the Tropics: A Remote Sensing Analysis at the Landscape Scale,” Journal of Biogeography, vol. 27 (3), pp. 765-776, 2000.

[11] U. Catur, Susanto, D. Yudhatama et al., Identifikasi Lahan Tambang Timah Menggunakan Metode Klasifikasi Terbimbing Maximum Likelihood Pada Citra Landsat 8, Pusat Pemanfaatan Penginderaan Jauh (LAPAN), Jakarta, 2015.

[12] A. J. Langner, “Monitoring Tropical Forest Degradation and Deforestation in Borneo, Southeast Asia,” 2009.

[13] K. Jia, S. Liang, X. Wei et al., “Land Cover Classification of Landsat Data with Phenological Features Extracted from Time Series MODIS NDVI Data,” Remote Sensing, vol. 6 (11), pp. 11518-11532, 2014.

[14] S. W. Running, T. R. Loveland, L. L. Pierce et al., “A Remote Sensing Based Vegetation Classification Logic for Global Land Cover Analysis,” Remote Sensing of Environment, vol. 51, pp. 39-48, 1995.

[15] D. Sudiana, and E. Diasmara, "Analisa Indeks Vegetasi Menggunakan Data Satelit NOAA/AVHRR dan TERRA/AQUA-MODIS." pp. 423-428.

[16] Sutanto, Penginderaan Jauh Jilid 1, Yogyakarta: Gajah Mada University Press, 1994.

[17] P. J. Curran, Principles of Remote Sensing, UK: Longman Scientific & Technical, 1985.
Published
2018-04-30