MOISTURE ABSORPTION AND FTIR CHARACTERISTIC OF TAPIOCA STARCH BIOCOMPOSITE REINFORCED DRAGON FRUIT ROOT FIBER (HYLOCEREUS POLYRHIZUS)

  • Mochamad Asrofi Jurusan Teknik Mesin, Fakultas Teknik, Universitas Andalas, Padang 25163, Indonesa
  • Hairul Abral Jurusan Teknik Mesin, Fakultas Teknik, Universitas Andalas, Padang 25163, Indonesa
  • Anwar Kasim Jurusan Teknologi Hasil Pertanian, Fakultas Teknologi Pertanian, Universitas Andalas, Padang 25163, Indonesa.
  • Adjar Pratoto Jurusan Teknik Mesin, Fakultas Teknik, Universitas Andalas, Padang 25163, Indonesa
  • Melbi Mahardika Jurusan Teknik Mesin, Fakultas Teknik, Universitas Andalas, Padang 25163, Indonesa
Keywords: biocomposites, tapioca starch, dragon fruit root fiber, FTIR, moisture absorption

Abstract

Abstrak

Biokomposit dari pati tapioka dan serat akar buah naga telah berhasil dibuat. Sebanyak 0, 2, 4, dan 6% serat (dari berat kering pati) digunakan sebagai penguat biokomposit. Fabrikasi biokomposit menggunakan metode solution casting. Pengujian serapan uap air digunakan untuk mengetahui persentase penyerapan uap air. Gugus fungsi dari biokomposit ditentukan dengan karakterisasi FTIR (Fourier Transform Infra-Red). Persentase penyerapan uap air menunjukkan bahwa, film pati tapioka mempunyai serapan uap 21,7%. Hasil ini lebih tinggi dibandingkan dengan film tapioka ditambah serat. Fenomena ini didukung dengan analisis FTIR pada gugus serapan air sekitar wavenumber 1647 cm-1. Pada daerah tersebut terlihat bahwa, film pati tapioka memiliki absorban yang tinggi dibandingkan film pati tapioka ditambah serat.

Kata-kata kunci: biokomposit, pati tapioka, serat akar buah naga, FTIR, serapan uap air.

Abstract

Tapioca starch biocomposites reinforced dragon fruit root fiber was successfully produced. As much 0, 2, 4 and 6% fiber fractions (from dry starch weight basis) were used as reinforcement in biocomposites. The fabrication of biocomposites was solution casting method. Moisture absorption testing was used to know the percentage of moisture absorption. The functional group of biocomposites was determined by FTIR (Fourier Transform Infra-Red) characterization. The moisture absorption percentage of tapioca starch film was 21,7%. This result was higher than fiber-reinforced biocomposites film. This phenomenon was supported by FTIR analysis on functional group (water absorption band) at wavenumber 1647 cm-1. In this wavenumber, tapioca starch film has higher absorbance than fiber-reinforced biocomposites film.

Keywords: biocomposites, tapioca starch, dragon fruit root fiber, FTIR and moisture absorption.

References

[1] H.M.C. de Azeredo, “Nanocomposites for Food Packaging Applications,” Food Res. Int., vol. 42, no. 9, pp. 1240–1253, 2009.

[2] K. Kaewtatip, and J. Thongmee, “Studies on the Structure and Properties of Thermoplastic Starch / Luffa Fiber Composites,” Mater. Des., vol. 40, pp. 314–318, 2012.

[3] H. Abral, M.F. Gafar, H. Andriyanto, Ilhamdi, S.M. Sapuan, M.R. Ishak, and Evitayani, “Alkali Treatment of Screw Pine (Pandanus Odoratissimus) Fibers and Its Effect on Unsaturated Polyester Composites,” Polym. Plast. Technol. Eng., vol. 51, no. 1, pp. 12-18, 2012.

[4] H. Abral, and J. Hartono, “Moisture Absorption of Starch Based Biocomposites Reinforced with Water Hyacinth Fibers,” IOP Conf. Ser. Mater. Sci. Eng., vol. 213 (September 2017), 2017.

[5] O. Faruk, A.K. Bledzki, H.P. Fink, and M. Sain, “Biocomposites Reinforced with Natural Fibers : 2000 – 2010,” Prog. Polym. Sci., vol. 37, no. 11, pp. 1552–1596, 2012.

[6] M. Asrofi, H. Abral, Y.K. Putra, S.M. Sapuan, and H.J. Kim, “Effect of Duration of Sonication During Gelatinization on Properties of Tapioca Starch Water Hyacinth Fiber Biocomposite,” Int. J. Biol. Macromol., vol. 108, pp. 167-176, 2018.

[7] H. Abral, G.J. Putra, M. Asrofi, J.W. Park, and H.J. Kim, “Effect of Vibration Duration of High Ultrasound Applied to Bio-Composite While Gelatinized on Its Properties,” Ultrason. Sonochem., vol. 40, pp. 697-702, 2018.

[8] H. Anuar, and A. Zuraida, “Improvement in Mechanical Properties of Reinforced Thermoplastic Elastomer Composite with Kenaf Bast Fibre,” Compos. Part B Eng., vol. 42, no. 3, pp. 462–465, 2011.

[9] S. Lee, and S. Wang, “Biodegradable Polymers / Bamboo Fiber Biocomposite with Bio-Based Coupling Agent,” Compos. Part A Appl. Sci. Manuf., Vol. 37, no. 1, pp. 80–91, 2006.

[10] W. Liu, M. Misra, P. Askeland, L.T. Drzal, and A.K. Mohanty, “‘Green’ Composites From Soy Based Plastic and Pineapple Leaf Fiber: Fabrication and Properties Evaluation,” Polymer, vol. 46, no. 8, pp. 2710–2721, 2005.

[11] J. Prachayawarakorn, S. Chaiwatyothin, S. Mueangta, and A. Hanchana, “Effect of Jute and Kapok Fibers on Properties of Thermoplastic Cassava Starch Composites,” Mater. Des., vol. 47, pp. 309–315, 2013.

[12] F.Z. Arrakhiz, M. Elachaby, R. Bouhfid, S. Vaudreuil, M. Essassi, and A. Qaiss, “Mechanical and Thermal Properties of Polypropylene Reinforced with Alfa Fiber Under Different Chemical Treatment,” Mater. Des., vol. 35, pp. 318–322, 2012.

[13] N.S. Lani, N. Ngadi, A. Johari, and M. Jusoh, “Isolation, Characterization, and Application of Nanocellulose From Oil Palm Empty Fruit Bunch Fiber As Nanocomposites,” J. Nanomater., vol. 2014, pp. 1-9, 2014.

[14] V.P. Cyras, L.B. Manfredi, M.T. Ton-That, and A. Vazquez, “Physical and Mechanical Properties of Thermoplastic Starch / Montmorillonite Nanocomposite Films,” Carbohydr. Polym., vol. 73, no. 1, pp. 55–63, 2008.
Published
2018-04-30