ANALISIS PENGARUH PENAMBAHAN NANOPARTIKEL EMAS TERHADAP INTENSITAS EMISI DAN WAKTU PELURUHAN FOTOLUMINESENSI KUANTUM DOT CDSE 618

  • Muhammad Lawrence Pattersons Prodi Fisika UIN Syarif Hidayatullah Jakarta
  • Isnaeni Isnaeni Pusat Penelitian Fisika Lembaga Ilmu Pengetahuan Indonesia, Gedung 442, Puspiptek, Tangerang Selatan 15314
Keywords: gold nanoparticles, quantum dots, photolumiescence

Abstract

Abstrak

Telah dilakukan pencampuran nanopartikel emas dengan kuantum dot CdSe 618. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh penambahan nanopartikel emas terhadap intensitas emisi dan waktu peluruhan fotoluminesensi kuantum dot CdSe 618. Dalam 2 mL kuantum dot CdSe 618, ditambahkan nanopartikel emas sebanyak 40 µL, 80 µL, dan 120 µL. Pada setiap penambahan tersebut, dilakukan pengujian fotoluminesensi dan time-resolved photoluminescence, masing-masing untuk mengetahui intensitas emisi dan waktu peluruhan fotoluminesensi kuantum dot CdSe 618 setelah ditambahkan dengan nanopartikel emas. Dilakukan pula pengukuran terhadap rentang panjang gelombang absorpsi dari nanopartikel emas, beserta ukuran diameter partikel-partikelnya. Hasil pengujian menunjukkan bahwa secara keseluruhan, intensitas emisi kuantum dot CdSe 618 setelah ditambahkan dengan nanopartikel emas menjadi lebih rendah, dan nilai waktu peluruhan fotoluminesensi menjadi lebih besar. Penurunan intensitas emisi dan peningkatan waktu peluruhan fotoluminesensi diakibatkan oleh kemunculan plasmon pada nanopartikel emas.

 Kata-kata kunci: nanopartikel emas, kuantum dot, fotoluminesensi.

 

Abstract

We have done the mixing of gold nanoparticles and CdSe 618 quantum dots. The purpose of this study is to see the influence of gold nanoparticles increment to emission intensity and photoluminescence decay time of CdSe 618 quantum dots. Into 2 mL of CdSe 618 quantum dots, we added gold nanoparticles as much as 40 µL, 80 µL, and 120 µL. At each adding, we did photoluminescence and time-resolved photoluminescence testings, to see emission intensity and photoluminescence time decay of CdSe  618 quantum dots after the adding of gold nanoparticles. We also did a measurement of absorption wavelength range of gold nanoparticles, along with diameter size of the particles. The results showed that, overall, the emission intensity of CdSe 618 quantum dots became lower after the adding of gold nanoparticles, and the value of photoluminescence decay time became bigger. The decrease of emission intensity and the increment of photoluminescence decay time were caused by the appearance of a plasmon at gold nanoparticles.      

Keywords: gold nanoparticles, quantum dots, photoluminescence.

References

[1] M. L. Landry et al., “Simple Syntheses of CdSe Quantum Dots,” J. Chemical Educ., vol. 91, pp. 274-279, Dec. 2013.

[2] E. S. Shibu et al., “Photoluminescence of CdSe and CdSe/ZnS Quantum Dots: Modifications for Making the Invisible Visible at Ensemble and Single-Molecule Levels,” Coordination Chemistry Reviews, 2013. http://dx.doi.org/10.1016/j.ccr.2013.10.014

[3] Isnaeni and N. Yulianto, “Pengaruh Nanopartikel Emas terhadap Peningkatan Emisi Cahaya Kuantum Dot,” Spektra: Jurnal Fisika dan Aplikasinya, vol. 16, pp. 45-49, Dec 2015.

[4] Isnaeni, “Pengaruh Sumber Eksitasi LED Biru terhadap Efisiensi Kuantum Nanopartikel Luminesensi,” Telaah, vol. 32, pp. 39-46, 2014.

[5] U. Resch-Genger and K. Rurack, “Determination of the Photoluminescence Quantum Yield of Dilute Dye Solutions (IUPAC Technical Report),” Pure Appl. Chemistry, vol. 85, pp. 2005-2026, Sep. 2013.

[6] S. Leyre et al., “Absolute Determination of Photoluminescence Quantum Efficiency Using An Integrating Sphere Setup,” Review of Scientific Instruments, vol. 85, pp. 123115-123115, Dec. 2014.

[7] D. Sarid and W. Challener, “Localized Surface Plasmons,” in Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications. New York: Cambridge Univ. Press, 2010, pp. 201-255.

[8] S. Jie et al., “Time Decay Behavior of Fullerene-C60 Studied by Time-Resolved Photoluminescence,” Acta Physica Sinica (Overseas Edition), vol. 4, pp. 175-182, July 1995.

[9] D. R. Bell et al., “Concentration-Dependent Binding of CdSe Quantum Dots on the SH3 Domain,” Nanoscale, vol. 10, pp. 351-358, Nov. 2017.

[10] K. Surana et al., “Synthesis, Characterization and Application of CdSe Quantum Dots,”J. Industrial and Engineering Chemistry, vol. 20, pp. 4188-4193, Nov. 2014.

[11] M. A. Hegazy and A. M. A. El-Hameed, “Characterization of CdSe-Nanocrystals Used in Semiconductors for Aerospace Applications: Production and Optical Properties,” NRIAG J. Astronomy and Geophysics, vol. 3, pp. 82-87, June 2014.

[12] M. J. Almendral-Parra et al., “A Novel Approach to the Fabrication of CdSe Quantum Dots in Aqueous Solution: Procedure for Controlling Size, Fluorescence Intensity, and Stability over Time,” J. Nanomaterials, vol. 2014, pp. 1-7, Apr. 2014.

[13] W. Haiss et al., “Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra,” Analytical Chemistry, vol. 79, pp. 4215-4221, June 2007.

[14] V. Dan’ko et al., “Photoluminescence Decay Rate of Silicon Nanoparticles Modified with Gold Nanoislands,” Nanoscale Research Lett., vol. 9, Apr. 2014. http://dx.doi.org/10.1186/1556-276X-9-165
Published
2018-04-30