TWO-DIMENSIONAL DYNAMICS OF SPHERICAL GRAIN FLOATING ON THE PROPAGATING WAVE FLUID SURFACE

  • Sparisoma Viridi Institut Teknologi Bandung
  • Nurhayati Nurhayati FST, Universitas Islam Negeri Ar-Raniry, Banda Aceh 23111, Indonesia
  • Johri Sabaryati FKIP, Universitas Muhammadiyah Mataram, Mataram 83127, Indonesia
  • Dewi Muliyati FMIPA, Universitas Negeri Jakarta, Jakarta 13220, Indonesia
Keywords: grains, simulation, buoyant force, gravitational force, viscous force

Abstract

 

Abstract

Simulation of a spherical grain floating in fluid surface propagating sinusoidal wave is performed using molecular dynamics method by assuming that superposition of buoyant, gravitational, and viscous forces will make the grain to move in two-dimension. It is different than previous result, where the grain can only move in one-dimension since size of the grain Db << λf. In this work Db < λf so that direction of buoyant force must be considered. It is predicted theoretically that the two-dimensional motion tends to be a one-dimensional motion when Db/λ less than a certain value, but it remains as a two-dimensional motion when more than that value. In 20 s of observation frequency of the sinusoidal wave can determine whether the grain will move in the same direction of the travelling wave or not.

Keywords: grains, simulation, buoyant force, gravitational force, viscous force.

References

[1] J. M. Vitale, M. C. Linn, “Designing virtual laboratories to foster knowledge integration: buoyancy and density” in Cyber-Physical Laboratories in Engineering and Science Education, M. E. Auer et al. eds. Springer Int. Pub. AG, 2018, ch. 7, pp. 163-189.

[2] M. Thiel, I. A. Hinojosa, T. Joschko, L. Gutow, “Spatio-temporal distribution of floating objects in the German Bight (North Sea),” J. Sea Res., vol. 65 pp. 368-379, Apr. 2011.

[3] M. Eriksen, L. C. M. Lebreton, H. S. Carson, M. Thiel, C. J. Moore, J. C. Borerro, F. Galgani, P. G. Ryan, J. Reisser, “Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea,” PLoS one, vol. 9, pp. e111913 (15 pages), Dec. 2014.

[4] G. Bilotta, A. Vorobyev, A. Hérault, D. Violeau, C. D. Negro, “SPH for the simulation of dam-break with floating objects” in Progress in Industrial Mathematics at ECMI 2014, Mathematics in Industry 22 G. Russo et al. eds. Cham: Springer, 2016, pp. 889-897.

[5] A. A. Budnikov, P. V. Zharkov, Yu. D. Chashechkin, “Experimental modeling of the shifting of floating objects in ‘garbage islands’,” Mosc. Univ. Phys. Bull., vol. 67, pp. 403-408, Jul. 2012.

[6] C. C. Giarrusso, E. P. Carratelli, G. Spulsi, “On the effects of wave drift on the dispersion of floating pollutants,” Ocean Eng., vol. 28, pp. 1339-1348, Oct. 2001.

[7] P. Annika, T. George, P. George, N. Konstantinos, D. Costas, C. Koutitas, “The Poseidon operational tool for the prediction of floating pollutant transport,” Mar. Pollut. Bull. vol. 43 270-278, Jul.-Dec. 2001.

[8] S. Viridi, Nurhayati, J. Sabaryati, “Dinamika satu-dimensi butiran berbentuk bola yang terapung pada permukaan fluida,” in Simposium Nasional Inovasi dan Pembelajaran Sains, Bandung, Indonesia, 9-10 Juli 2018, pp. (revised).

[9] L. Wu, Y. Yang, G. Yang, X. Gui, “Statics of supporting leg for a water strider robot” in Proceedings of 2013 Chinese Intelligent Automation Conference, Lecture Notes in Electrical Engineering 255 Z. Sun et al. eds. Heidelberg: Springer, 2013, ch. 39, pp. 349-356.

[10] Y. Shi, S. Li, H. Zhang, S. Peng, H. Chen, R. Zhou, T. Mao, “Numerical modeling of floating oil boom motions in wave-currect coupling conditions,” J. Ocean Univ. China, vol. 16, pp. 602-608, Aug. 2017.

[11] L. Chen, L. Sun, J. Zang, A. J. Hillis, A. R. Plummer, “Numerical study of roll motion of a 2-D floating structure in viscous flow,” J. Hidrodynam. B, vol. 28, pp. 544-563, Aug. 2016.
Published
2018-12-30