PENGARUH REDAMAN OLI GETARAN PAKSA DENGAN MASSA *UNBALANCE* SISTEM SATU DERAJAT KEBEBASAN

Ahmad Kholil, Sirojuddin, Moch Banu Harjana

Program Studi Pendidikan Teknik Mesin, Jurusan Teknik Mesin, Fakultas Teknik

Universitas Negeri Jakarta, Jl. Rawamangun Muka, Jakarta Timur, Indonesia,13220 e-mail: ach_cholil@yahoo.com

Abstrak

Vibration apparatus sistem satu derajat kebebasan teredam merupakan salah satu alat simulasi uji getaran yang dapat mensimulasikan fenomena getaran sistem massa-pegas-redaman dengan pemaksa unbalance. Tujuan penelitian ini adalah untuk mengetahui frekuensi pribadi sistem dan efek redaman pada beberapa massa unbalance terhadap perubahan frekuensi eksitasi. Oli redaman yang digunakan adalah SAE 20 dan 30. Dari hasil pengujian bahwa semakin kental viskositas redaman, semakin besar efek redaman untuk menurunkan amplitudo pada sistem yang bergetar. Dalam pengujian tersebut, diperoleh rasio redaman 0.2435 untuk oli SAE 20 dan 0.4331 untuk oli SAE 30.

Kata kunci: redaman, oli, getaran.

1. Pendahuluan

Salah satu masalah dari suatu mesin adalah getaran yang di hasilkan oleh mesin itu sendiri. Getaraan sangat berpengaruh terhadap struktur dan kontruksi mesin. Getaran yang melebihi getaran yang diijinkan menyebabkan patah atau lelah pada komponen mesin tersebut. Untuk menghindari dan mencegah terjadi halhal tersebut, maka harus dilakukan pengukuran getaran pada mesin. Hasil pengukuran getaran dapat dijadikan patokan untuk memperoleh sumber kemudian dilakukan getaran dan identifikasi komponen mesin yang mengalami kerusakan untuk melakukan penggantian komponen mesin yang baru.

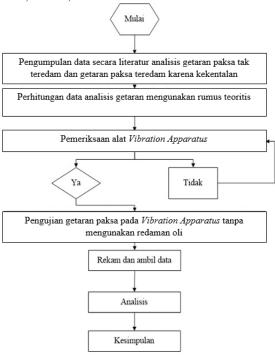
Getaran memiliki banyak definisi, secara luas diartikan sebagai gerakan bolak-balik komponen mekanik suatu mesin sebagai reaksi dari adanya gaya dalam (gaya yang dihasilkan dari mesin tersebut) maupun gaya luar (gaya yang berasal dari luar atau sekitar mesin). Pada dasarnya, getaran yang berlebihan disebabkan oleh gaya eksitasi getaran

yang berasal dari mesin tersebut yang berkaitan dengan:

- Kondisi yang tidak seimbang baik statis maupun dinamis yang berasal dari mesin tersebut:
- 2. *Crash* atau cacat yang terjadi pada elemen rotasi seperti pada bearing rusak, impeller macet;
- 3. Ketidak sempurnaan bagian atau fungsi mesin tersebut.

Getaran terdiri dari beberapa komponen utama, yaitu massa, pegas, peredam, dan gaya eksitasi. Energi dapat disimpan didalam massa dan pegas, sedangkan peredam hanya menyerap energi dalam wujud panas. Energi masuk ke dalam sistem melalui penerapan gaya eksitasi yang dikenakan pada massa tersebut. Mesin yang ideal tidak akan bergetar melebihi getaran yang diijinkan karena energi diterima sepenuhnya untuk fungsi mesin itu sendiri. Dalam kenyataannya, mesin dirancang sebaik-baiknya agar getaran yang dihasilkan relatif rendah tetapi. dalam jangka waktu yang relatif lama akan terjadi kenaikan level getaran. Hal tersebut disebabkan oleh: Keausan pada elemen mesin; Proses pemantapan pondasi (base plante) sedemikian sehingga terjadi deformasi rupa

dan mengakibatkan misalignment pada poros;Perubahan perilaku dinamik pada mesin sehingga terjadi perubahan frekuensi.


Analisis ciri mekanik memungkinkan pemanfaatan sinyal getaran untuk mengetahui kondisi mesin tersebut tanpa membongkar mesin tersebut, sehingga dapat dimanfaatkan untuk analisis lebih lanjut dalam perbaikan pada kerusakan yang terjadi. Dengan melakukan analisis getaran secara berkala, maka sesuatu yang tidak normal pada mesin dapat dideteksi sebelum kerusakan yang lebih besar.

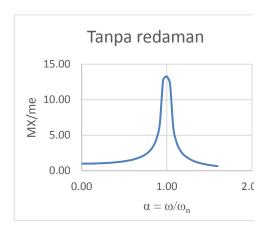
Dalam menganalisis suatu getaran yang kompleks, maka memerlukan alat simulasi uji getaran yang terdiri dari pegas, massa, peredam dan gaya eksitasi. Dalam hal ini, alat vibration apparatus dijadikan sebuah alat simulasi untuk menguji getaran dengan massaunbalance sistem sastu derajat kebebasan. Derajat kebebasan sistem adalah jumlah koordinat bebas yang digunakan untuk menggambarkan gerak suatu sistem. Getaran yang tejadi karena adanya gaya rangsang dari luardisebutgetaran paksa. Jika rangsangan itu berosilasi atau bergetar, maka sistem dipaksa bergetar pada frekuensi rangsangan. frekuensi rangsangan sama dengan salah satu frekuensi natural sistem, maka akan didapat keadaan resonansi, dan osilasi yang besar akan membahayakan sistem tersebut mungkin terjadi. Jika getaran yang terjadi sama atau lebuh besar dari frekuensi pribadi sistem, getaran tersebut dapat menyebabkan kerusakan pada sistem. Untuk menghindari terjadinya resonansi yang berlebihan pada sistem, maka harus dibuat peredam yang dapat membatasi amplitudo osilasi pada waktu resonansi.

2. Metode Penelitian

Pengujian massa tidak seimbang dengan metode eksperimen yang dilakukan oleh penguji untuk menganalisis besaran getaran pada mesin yang sedang berputar dengan massa tidak seimbang menggunakan alat simulasi vibration apparatus sistem satu derajat kebebasan teredam dengan oli SAE 20 dan 30 sebagai media

redamannya. Selanjutnya penguji melakukan analisis alat simulasi getaran paksa tak teredam dengan menggunakan perhitungan matematis untuk mengetahui pendekatan alat simulasi yang dibuat dengan rumus getaran yang sudah baku. Setelah selesai menganalisis alat uji, peneliti menguji alat simulasi getaran paksa takteredam untuk mengetahui seberapa efektifkah efek redaman terhadap getaran sistem. Kemudian peneliti menguji getaran paksa teredam dengan redaman oli SAE 20 dan 30 pada interval kecepatan putaran 0 sampai dengan putaran 400 RPM dengan selisi 10 RPM dan mengunakan massa unbalance 10 gram, 15 gram, 20 gram dan gram sebagai gaya pengeksitasinya. Pengukuran dilakukan dengan menggunakan MPDI, LVDT, dan timer.

Gambar 1. Diagram alir penelitian

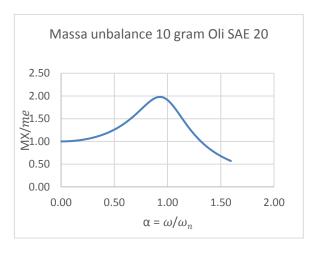

3. Hasil Penelitian

3.1 Pengujian getaran tanpa redamanmassa*unbalance* 10 gram.

$$\frac{\text{MX}}{me} = \frac{1}{\sqrt{(1-\alpha^2)^2}}$$

Tabel 1 Hasil pengujian getaran tanpa redaman unbalance 10 gram.

		- 6					
Keteran	t	edaman	Tanpa R	MX	a = **	RPM	No
	(detik)	A - (mm)	A + (mm)	me	69 _E		
Tidak ber	10	-	-	1.00	0.00	0	1
Tidak ber	10	-	-	1.00	0.04	10	2
Tidak ber	10	-	-	1.00	0.08	20	3
Tidak ada	10	-	-	1.01	0.12	30	-4
Tidak ada	10	-	1	1.02	0.16	40	- 5
Tidak ada	10		·	1.04	0.20	50	6
Osila	10	0,1	0.10	1.06	0.24	60	7
Osila	10	0,1	0.10	1.08	0.28	70	8
Osila	10	0,1	0,1	1.11	0.32	80	9
Osila	10	0,1	0.10	1.14	0.36	90	10
Osila	10	0,1	0.10	1.19	0.40	100	11
Osila	10	0,1	0.10	1.24	0.44	110	12
Osila	10	0,1	0.10	1.29	0.48	120	13
Osila	10	0,2	0.10	1.37	0.52	130	14
Osila	10	0,2	0.10	1.45	0.56	140	15
Osila	10	0,2	0.10	1.56	0.60	150	16
Osila	10	0,2	0.20	1.69	0.64	160	17
Osila	10	0,3	0.20	1.86	0.68	170	18
Osila	10	0,2	0.10	2.07	0.72	180	19
Osila	10	0,3	0.10	2.36	0.76	190	20
Osila	10	0,6	0.70	2.77	0.80	200	21
Osila	10	18,7	13.70	3.39	0.84	210	22
Osila	10	3,59	27.30	4.43	0.88	220	23
Osila	10	32,7	29.90	6.51	0.92	230	24
Osila	10	36,2	26.60	12.75	0.96	240	25
Resona	10	47,1	49.70	-	1.00	250	26
Osila	10	28,8	13.10	12.31	1.04	260	27
Osila	10	13,7	12.50	6.01	80.1	270	28
Osila	10	18,9	13.00	3.93	1.12	280	29
Osila	10	15,0	7.50	2.89	1.16	290	30
Osila	10	12,1	9.90	2.27	1.20	300	31
Osila	10	10.23	9.54	1.89	1.24	310	32
Osila	10	9.43	9.23	1.59	1.28	320	33
Osila	10	9.27	8.23	1.37	1.32	330	34
Osila	10	7.22	6.63	1.19	1.36	340	35
Osila	10	7.10	6.61	1.05	1.40	350	36
Osila	10	5.27	5.45	0.94	1.44	360	37
Osila	10	4.13	5.21	0.85	1.48	370	38
Osila	10	3.22	4.43	0.77	1.52	380	39
Osila	10	3.26	3.12	0.70	1.56	390	40
Osila	10	2.46	2.56	0.65	1.60	400	41
							_

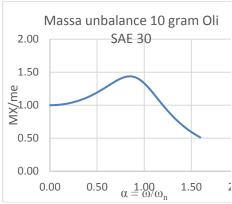

Gambar 2. Grafik rasio ampitudo tanpa redaman.

3.2 Pengujian getaran teredam massa*unbalance* 10 gram (SAE 20).

$$\frac{MX}{me} = \frac{1}{\sqrt{(1-\alpha^2)^2 + 4.5^2 \cdot \alpha^2}}$$

Tabel 2 Hasil pengujian getaran teredam oli SAE 20 pada unbalance 10 gram.

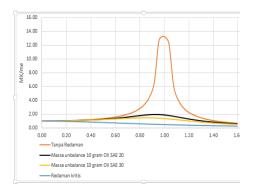
_	_			01: 0					
No	RPM	α = -ω	MX	X1	AE 20 X2	$\delta = \ln \frac{\chi_1}{\chi_2}$	$= \ln \frac{\chi_1}{\chi_2}$ $\zeta = \frac{\delta}{2\pi}$		Keterangan
140	KPM	ω_n	me	(mm)	(mm)	(mm)	5 - 2x	(detik)	Keterangan
1	0	0.00	1.00	Çy	(mm)	` ′		10	Tidak berputar
2	10	0.04	1.00	-	-	-	-	10	Tidak berputar
3	20	0.04	1.00	-	-	-	-	10	Tidak berputar
4	30	0.08	1.01					10	
5	40	0.12	1.01	-	-	-	-	10	Tidak berputar
6	50	0.10	1.02	-	-	-	-	10	Tidak berputar
7	60	0.24	1.04					10	Tidak ada osilasi Tidak ada osilasi
8	70	0.24	1.03	-	-	-	-	10	
9	80	0.28	1.07	-	-	-	-	10	Tidak ada osilasi
_									Tidak ada osilasi
10	90	0.36	1.12	-	-	-	-	10	Tidak ada osilasi
11	100	0.40	1.15	-	-	-	-	10	Tidak ada osilasi
12	110	0.44	1.19	-	-	-	-	10	Tidak ada osilasi
13	120	0.48	1.23	-	-	-	-	10	Tidak ada osilasi
14	130	0.52	1.28	-	-	-	-	10	Tidak ada osilasi
15	140	0.56	1.34	-	-	-	-	10	Tidak ada osilasi
16	150	0.60	1.40	3.3	0.6	1.7047	0.2715	10	Osilasi
17	160	0.64	1.47	3.5	0.7	1.6094	0.2563	10	Osilasi
18	170	0.68	1.55	3.6	0.7	1.6376	0.2608	10	Osilasi
19	180	0.72	1.63	4.0	0.8	1.6044	0.2555	10	Osilasi
20	190	0.76	1.72	4.5	0.9	1.6094	0.2563	10	Osilasi
21	200	0.80	1.81	4.7	1.0	1.5412	0.2454	10	Osilasi
22	210	0.84	1.89	4.8	0.9	1.6719	0.2662	10	Osilasi
23	220	0.88	1.95	5.0	0.9	1.7168	0.2734	10	Osilasi
24	230	0.92	1.98	5.2	1.1	1.5533	0.2473	10	Osilasi
25	240	0.96	1.97	5.3	1.0	1.6752	0.2668	10	Osilasi
26	250	1.00	1.92	5.5	1.0	1.6956	0.2700	10	Osilasi
27	260	1.04	1.83	5.5	1.1	1.6058	0.2557	10	Osilasi
28	270	1.08	1.71	5.7	1.2	1.5564	0.2478	10	Osilasi
29	280	1.12	1.58	6.3	1.2	1.6646	0.2651	10	Osilasi
30	290	1.16	1.44	7.2	1.3	1.7131	0.2728	10	Osilasi
31	300	1.20	1.32	7.7	1.4	1.6982	0.2704	10	Osilasi
32	310	1.24	1.20	7.9	1.6	1.5956	0.2541	10	Osilasi
33	320	1.28	1.09	8.8	1.8	1.5892	0.2531	10	Osilasi
34	330	1.32	1.00	9.1	2.0	1.5096	0.2404	10	Osilasi
35	340	1.36	0.91	9.8	1.9	1.6446	0.2619	10	Resonansi
36	350	1.40	0.84	9.2	2.0	1.5271	0.2432	10	Osilasi
37	360	1.44	0.77	8.6	1.5	1.7416	0.2773	10	Osilasi
38	370	1.48	0.71	8.3	1.5	1.7156	0.2732	10	Osilasi
39	380	1.52	0.66	8.2	1.6	1.6353	0.2604	10	Osilasi
40	390	1.56	0.61	7.4	1.3	1.7432	0.2776	10	Osilasi
41	400	1.60	0.57	7.0	1.2	1.7664	0.2813	10	Osilasi
			/						

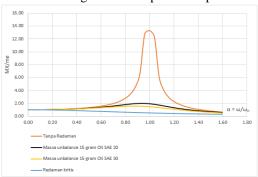


Gambar 3. Grafik rasio amplitudodengan redaman oli SAE 20 pada massa unbalance 10 gram.

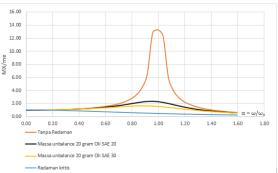
Grafik diatas memiliki nilai rasio redaman 0.2617 menandakan bahwa redaman masih memiliki efek untuk menyerap getaran yang dihasilkan oleh *vibration apparatus*. Dalam hal

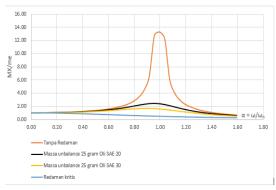
ini, redaman tersebut dapat dikatakan kondisi *underdamped* karena masih bisa meredam getaran pada *vibration* apparatus.


3.3 Pengujian getaran teredam massa*unbalance* 10 gram (SAE 30).


Gambar 4. Grafik rasio amplitudo dengan redaman oli SAE 30 pada massa unbalance 10 gram.

Grafik diatas memiliki nilai rasio redaman 0.3753 menandakan bahwa redaman masih memiliki efek untuk menyerap getaran yang dihasilkan oleh vibration apparatus. Dalam hal ini, redaman tersebut dapat dikatakan kondisi underdamped karena masih bisa meredam getaran pada vibration apparatus.


Efek redaman oli SAE 20 dan 30 massa unbalance 15 gram, 20 gram, 25 gram metodenya sama dengan pengujian sebelumnya. Berikut adalah hasil dari pengujian beberapa redaman terhadap massa unbalance pada beberapa frekuensi eksitasi.


Gambar 5. Grafik pengaruh efek redaman massa unbalance 10 gram terhadap rasio amplitudo.

Gambar 6 Grafik pengaruh efek redaman massa unbalance 15 gram terhadap rasio amplitudo.

Gambar 7 Grafik pengaruh efek redaman massa unbalance 20 gram terhadap rasio amplitudo.

Gambar 8 Grafik pengaruh efek redaman massa unbalance 25 gram terhadap rasio amplitudo.

Tabel 3. Rasio redaman dan frekuensi

SAE	m	ζ		Resonansi	Amplitu
	(gram)	Teori	Uji coba	(RPM)	(mm)
20	10	0.2439	0.2617	340	9.8
	15	0.2436	0.2542	330	10.1
	20	0.2433	0.2204	320	10.5
	25	0.2431	0.2115	300	10.7
30	10	0.4338	0.3753	360	8.8
	15	0.4333	0.3424	350	7.3
	20	0.4328	0.3237	340	9.5
	25	0.4324	0.3137	330	10.2

Tabel 4. Frekuensi natural dan resonansi

NT-	m	$\omega_n(RPM)$			
No	(gram)	Teori	Pengujian		
1	10	250.76	250		
2	15	250.48	250		
3	20	250.20	240		
4	25	249.93	240		

4. Kesimpulan

Efek redaman oli SAE 20 dan SAE 30 sangat berpengaruh terhadap penurunan rasio amplitudo dan memperlambat sistem beresonansi sehingga bisa mencegah kerusakan pada sistem yang bergetar.

Hasil dari pengujian dan analisis getaran paksa teredam tak didapatkan frekuensi natural berdasarkan perhitungan teoritis untuk massa 10 gram yaitu 250.76 **RPM** sedangkan fenomena resonansi menurut eksperimen vaitu pada putaran 250 RPM. Massa 15 gram frekuensi natural pada putaran 250.48 RPM dan resonansi getaran pada pengujian terjadi pada putaran 250 RPM. Massa 20 gram memiliki frekuensi natural sebesar 250.20 RPM sedangkan pada pengujian menngalami resonansi pada putaran 240 RPM. Massa 20 gram memiliki frekuensi pribadi 249.93 RPM sedangkan dalam pengujian mengalami resonansi pada putaran 240 RPM. Data hasil pengujian alat simulasi getaran paksa vibration adanya perbedaan apparatus disebabkan oleh banyak faktor yaitu kurangnya tingkat ketelitian pada saat pengukuran, adanya gesekan antar rangka vibration

apparatus yang menyebabkan pengukuran LVDT tidak maksimal. Dengan adanya faktor penghambat tersebut, maka akan berpengaruh dalam pengujian alat.

- Hasil pengujian getaran paksa teredam karena efek redaman oli SAE 20 dengan nilai rasio redaman 0.2435 yaitu pada pengujian getaran massa unbalance 10 gram mulai berosilasi pada putaran 150 RPM dan beresonansi pada putaran 340 RPM di ampiltudo maksimum 9.8 mm, pada pengujian getaran massa unbalance 15 gram mulai berputar pada putaran 140 RPM dan beresonansi pada putaran 330 RPM di amplitudo maksimum 10.1 mm, sedangkan pada pengujian getaran massa unbalance 20 gram mulai berosilasi pada putaran 120 RPM dan beresonansi pada putaran 320 RPM di amplitudo maksimum 10.4 mm, massa 25 gram mulai berosilasi pada putaran 110 RPM dan beresonansi pada putaran 300 RPM pada amplitude maksimal 10.7 mm.
- Hasi pengujian getaran paksa teredam karena efek redaman oli SAE 30 yang memiliki rasio redaman 0.4331 (underdamped) yaitu pada pengujian getaran massa unbalance 10 gram mulai berosilasi pada putaran 160 RPM dan beresonansi pada putaran 360 RPM di ampiltudo maksimum 8.8 mm, pada pengujian getaran massa unbalance 15 gram mulai berosilasi pada putaran 160 RPM dan beresonansi pada putaran 360 RPM di amplitudo maksimum 7.3 mm, sedangkan pada pengujian getaran massa unbalance 20 gram mulai berosilasi pada putaran 140 RPM dan beresonansi pada putaran 340 RPM di mm. amplitudo maksimum 9.5 pengujian massa unbalance 25 gram mulai berosilasi pada putaran 130 RPM sedangkan berresonansi pada putaran 330 RPM di amplitudo maksimum 10.2 mm.
- d. Semakin kental viskositas peredam, semakin besar efek redaman untuk menurunkan amplitudo pada sistem yang bergetar. Dalam pengujian tersebut, maka diperoleh hasil rasio redaman 0. 2435 untuk oli SAE 20 dan 0.4331 untuk oli SAE 30. Dari data tersebut, efek redaman terbesar pada oli SAE 30.

Daftar Pustaka

- [1] S.G. Kelly. 1996. Theory and Problems of Mechanical Vibration. Schaum's Outline Series. McGraw-Hill, New York.
- [2] S. Rao Singiresu. 1995. *Mechanical Vibration*. Third Edition, United States Of America: Addison weasley publishing company.
- [3] Thomson T.William. 1986.

 TeoriGetaran denganPenerapan,
 terj. Lea Prasetyo. Erlangga:
 Jakarta.
- [4] Bolton, W. 2008. Sistem Instrumentasi danSistem Kontrol. Erlangga: Jakarta.
- [5] Hutahaean, Ramses. 2012. *Getaran Mekani*. Penerbit Andi: Yogjakarta.
- [6] Karyasa, Tungga Bhimadi. 2011. Dasar-dasar Getaran Mekanik. Andi: Yogyakarta.
- [7] Meirovites, L. *Element of Vibration*. McGraw-Hill, Inc. 1975