Perbandingan Metode Lagrange dan Metode Newton pada Interpolasi Polinomial dalam Mengestimasi Harga Saham

Leny Wiji Astuti¹, Sudarwanto², Lukita Ambarwati³

Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Jakarta

Jl. Pemuda 10, Rawamangun, Jakarta Timur 13220, lenywijiastuti@gmail.com

Abstrak

Saham adalah surat berharga dalam wujud selembar kertas yang dikeluarkan oleh suatu perusahaan yang kemudian dapat menyatakan bahwa pemilik saham tersebut adalah pemilik sebagian perusahaan tersebut sejumlah persentase saham yang dimiliki oleh pemegang saham. Jual-beli saham terjadi di pasar modal yang dalam kurun waktu lima tahun ini kinerjanya terus tumbuh di Indonesia. Hal tersebut mengakibatkan banyak orang lebih memilih berinvestasi melalui saham. Berinvestasi melalui saham tidak terlepas dari resiko seperti kerugian, oleh karena itu diperlukan analisis estimasi harga saham untuk mengurangi resiko tersebut. Penggunaan ilmu matematika dan komputasi dapat dikombinasikan untuk menganalisis estimasi harga saham, yaitu interpolasi polinomial dan dua metode yang digunakan adalah metode Lagrange dan metode Newton. Data yang digunakan adalah data harga saham PT Indosat Tbk. selama tiga bulan terakhir yang kemudian dianalisis dengan kedua metode tersebut. Hasil yang diperoleh adalah hasil interpolasi harga saham dengan metode Newton memiliki nilai galat yang lebih rendah dibandingkan dengan nilai galat dari hasil interpolasi harga saham dengan metode Lagrange.

Kata kunci: harga saham, interpolasi, interpolasi polinomial, interpolasi Lagrange, interpolasi Newton.

1 PENDAHULUAN

Kepemilikan suatu saham menyatakan bahwa suatu pemegang saham adalah pemilik sebagian dari perusahaan yang mengeluarkan saham tersebut secara sah sejumlah persentase saham yang dimiliki oleh pemegang saham. Saham itu sendiri diperjualbelikan di pasar modal, dan jika dilihat dalam periode jangka lima tahun terakhir, kinerja pasar modal Indonesia masih terus tumbuh. (marketeers.com, diakses tanggal 25 April 2015). Hal tersebut membuat semakin banyak orang yang ingin ikut serta dalam pasar modal, apalagi jika dibandingkan dengan hasil dari investasi di bank yang suku bunganya sedikit.

Orang-orang yang berminat untuk berinvestasi melalui saham kemudian akan lebih memilih untuk membeli saham dari perusahaan-perusahaan yang memiliki pertumbuhan cukup baik, seperti misalnya perusahaan-perusahaan yang bergerak di bidang telekomunikasi yang memang cukup baik perkembangannya pada era modern saat ini. Meskipun berinvestasi melalui saham dengan membeli saham dari

perusahaan-peru-sahaan yang memiliki pertumbuhan yang baik tidak melepas kemungkinan untuk terkena resiko seperti menderita kerugian. Oleh karena itu, para pemegang saham dalam upaya mengurangi potensi tingkat kerugian perlu mengetahui perkembangan nilai saham untuk mengestimasi nilai saham.

Analisis yang dilakukan dalam mengestimasi harga saham dapat dilakukan dengan menggunakan pendekatan-pendekatan ilmu pengetahuan, seperti ilmu matematika yang dikombinasikan dengan ilmu komputasi.Salah satu hasil kombinasi ilmu matematika dan ilmu komputer yang dapat diaplikasikan pada analisis saham adalah interpolasi polinomial, seperti yang telah dilakukan oleh Muhammad (2011) dalam jurnalnya yang mengatakan bahwa salah satu implementasi metode numerik yang dapat digunakan dalam mengestimasi harga saham adalah interpolasi polinomial metode Newton dan metode Lagrange.

2 KAJIAN TEORI

2.1 Saham

Saham merupakan surat berharga dalam wujud selembar kertas yang dikeluarkan oleh suatu perusahaan yang kemudian dapat menyatakan bahwa pemilik saham tersebut adalah pemilik sebagian perusahaan tersebut sebesar persentase tertentu sesuai jumlah lembar saham yang dimiliki. Saham diperjualbelikan di pasar modal yang sering disebut bursa saham, di mana di dalamnya melibatkan para broker yang menjadi perantara antara penjual dan pembeli. Pasar modal tersebut memungkinkan untuk menggiring berbagai pihak kepada berbagai keuntungan akibat terciptanya pertemuan suatu penawaran dan permintaan serta orang-orang yang hendak melakukan perjanjian jual-beli.

2.1.1 Jenis-jenis Saham berdasarkan Hak Kepemilikan

Saham dapat dibagi menjadi dua jenis berdasarkan hak kepemilikannya (Fakhruddin dan Hadianto, 2001:12), yaitu saham biasa dan saham preferen. Hak-hak yang biasanya dimiliki oleh pemegang saham biasa adalah hak kontrol, hak menerima, dan hak preemtif, sedangkan saham preferen memiliki beberapa karakteristik, yaitu preferen terhadap dividen dan preferen pada waktu likuidasi. Berdasarkan hak kepemilikannya, para pemegang saham preferen memiliki hak yang lebih jika dibandingkan dengan hak yang dimiliki oleh para pemegang saham biasa.

2.1.2 Harga dan Nilai Saham

Harga saham adalah harga yang terjadi di pasar bursa pada waktu tertentu yang ditentukan oleh pelaku pasar yaitu permintaan dan penawaran pasar (Hartono, 1998:69). Pendekatan-pendekatan yang berkaitan dengan harga saham adalah analisis fundamental dan analisis teknikal. Analisis fundamental mempelajari hubungan antara harga saham dengan kondisi perubahan berdasarkan nilai kekayaan bersih perusahaan tersebut. Analisis teknikal menggunakan informasi yang muncul dari luar perusahaan yang memiliki dampak terhadap perusahaan (Husnan, 1996:315).

Penilaian saham dibagi menjadi tiga jenis (Hartono, 2000: 79), yaitu nilai buku, nilai pasar, dan nilai intrinsik. Nilai buku adalah nilai aset yang tersisa setelah dikurangi kewajiban perusahaan jika dibagikan, nilai pasar adalah nilai yang terjadi di pasar modal akibat permintaan dan penawaran saham yang kemudian nilai tersebut mewakili nilai suatu perusahaan, sedangkan nilai intrinsik adalah nilai saham yang menentukan harga wajar suatu saham agar saham tersebut mencerminkan nilai saham yang sebenarnya.

2.2 Interpolasi Polinomial

Interpolasi adalah suatu proses untuk mencari dan menghitung nilai suatu fungsi dengan grafik yang terbentuk dari sekumpulan titik yang biasanya merupakan hasil dari sebuah fungsi yang telah diketahui, di mana grafik tersebut harus melalui semua titik yang ada dengan ketelitian data yang sangat tinggi. Fungsi interpolasi yang paling banyak dipakai adalah fungsi polinomial karena nilai dari fungsi-fungsi polinomial mudah dioperasikan. Suatu polinomial akan dikatakan menginterpolasikan suatu nilai-nilai ketika suatu polinomial tersebut dapat digunakan untuk menghitung suatu nilai, misalkan y, yang berkaitan dengan suatu x, yang tidak terdapat dalam suatu hasil pengamatan tetapi terletak di antara nilai-nilai x pada hasil pengamatan tersebut.

Definisi 2.2.1. Bentuk Baku Polinomial

Suatu polinomial $P_n(x)$ yang berderajat kurang atau sama dengan n dalam bentuk baku adalah suatu fungsi yang dituliskan dalam bentuk

$$P_n(x) = a_0 + a_1 x + \dots + a_n x^n, a_n \neq 0$$
 (1)

dengan koefisien-koefisien a_0 , a_1 , ..., a_n bilangan nyata. Apabila koefisien-koefisien tersebut tidak bernilai nol, maka polinomial tersebut dikatakan berderajat tepat n.

Setelah polinomial interpolasi $P_n(x_i)$ ditemukan, $P_n(x_i)$ dapat digunakan untuk menghitung perkiraan nilai y di x=a, yaitu $y=P_n(a)$. Terdapat dua kemungkinan letak nilai x=a, yaitu nilai x=a yang terletak di dalam rentang titiktitik data $(x_0 < a < x_n)$ yang kemudian $y_i = P_n(x_i)$ disebut sebagai nilai interpolasi dan nilai x=a yang terletak di luar rentang titik-titik data $(a < x_0)$ atau $a > x_n)$ yang kemudian $y_i = P_n(x_i)$ disebut sebagai nilai ekstrapolasi.

2.2.1 Eksistensi dan Ketunggalan Interpolasi Polinomial

Sifat-sifat dasar dalam metode interpolasi polinomial adalah eksistensi dan ketunggalan.

Teorema 2.2.1. Eksistensi dan Ketunggalan Interpolasi Polinomial

Misalkan terdapat sebanyak n+1 pasangan titik $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$ dan nilai-nilai $x_0, x_1, x_2, ..., x_n$ berbeda. Maka ada polinomial yang berifat tunggal $P_n(x)$ berderajat tepat n sedemikian sehingga $P_n(x_i) = y_i$, untuk i = 0, 1, 2, ..., n.

Pembuktian Teorema (2.2.1) dapat dilakukan dengan menyatakan Persamaan (1) dalam bentuk matriks persamaan linear AX=B seperti berikut

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

Sistem linear AX = B mempunyai solusi yang tunggal, yaitu $X = A^{-1}B$ jika dan hanya jika det(A) = 0. Matriks A adalah matriks Vandermonde yang determinannya tidak sama dengan nol. Jadi terdapat polinomial yang berifat tunggal $P_n(x)$ berderajat tepat n sedemikian sehingga $P_n(x_i) = y_i$, untuk i = 0, 1, 2, ..., n.

2.2.2 Galat pada Interpolasi Polinomial

Perhitungan numerik tidak terlepas dari kesalahan atau galat (*error*). Selama f(x) dapat dihampiri oleh interpolasi polinomial $P_n(x)$, menurut Bohrens (2005) teorema galat interpolasidapat dinyatakan sebagai berikut

Teorema 2.2.2. Teorema Galat Interpolasi

Misalkan $x_0, x_1, x_2, ..., x_n$ berbeda dan misalkan x adalah titik yang dimiliki oleh fungsi f. Asumsikan bahwa $f \in C^{n+1}(I_x)$, yang artinyaf merupakan fungsi yang dapat didiferensiasikan secara kontinu sebanyak (n+1) kali dengan (I_x) adalah interval terkecil yang berisi $x_0, x_1, x_2, ..., x_n$ dan x. Maka galat interpolasi pada titik x adalah

$$\varepsilon_n(x) = f(x) - P_n(x) = \frac{f^{n+1}(\xi)}{(n+1)!} \prod_{i=0} n(x - x_i)$$
 (2)

di mana $\xi \in I_x$.

 $\varepsilon_n(x)$ merupakan fungsi galat interpolasi yang mengurangkan nilai fungsi sebenarnya, f(x), dengan nilai interpolasinya, $P_n(x)$.

2.3 Interpolasi Polinomial Lagrange

Bentuk polinom Lagrange derajat n dinyatakan sebagai

$$P_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$$
(3)

dengan

$$L_{i}(x) = \prod_{j=0; j \neq i}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$
(4)

dan $f(x_i) = y_i$. $P_n(x)$ menyatakan fungsi interpolasi polinomial Lagrange berderajat n dengan $f(x_i)$ sebagai koefisien interpolasi Lagrangenya dan L_i sebagai polinomial Lagrangenya.

2.4 Interpolasi Polinomial Newton

Bentuk polinom Newton derajat n adalah sebagai berikut

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_1)(x - x_0) + \dots + a_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$
 (5)

di mana a_0 dan a_1 disebut sebagai koefisien-koefisien dari fungsi polinomial newton. Secara rekursif, polinom Newton derajat n dapat dinyatakan sebagai berikut

$$P_n(x) = P_{n-1}(x) + a_n(x - x_0)(x - x_1)...(x - x_{n-1})$$
(6)

dengan basis $P_0(x) = f(x_0) = a_0$.

2.5 Pengukuran Keakuratan Analisis

2.5.1 Standar Deviasi

Persamaan standar deviasi menurut Yamane(1967) adalah sebagai berikut

$$SD = \sqrt{\frac{1}{n+1} \sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2}$$
 (7)

dengan n adalah banyaknya data, x_i adalah nilai data pada urutan ke-i, dan x adalah nilai rata-rata dari data sampel percobaan. Kemudian standar deviasi tersebut digunakan untuk menghitung standar deviasi relatif dalam mengukur mengukur ketepatan suatu metode, di mana rumus standar deviasi relatif adalah sebagai berikut

$$RSD = \frac{SD}{\overline{x}} \times 100\% \tag{8}$$

dengan RSD adalah standar deviasi relatif, SD adalah nilai standar deviasi dan \bar{x} adalah nilai rata-rata dari data sampel percobaan.

2.5.2 Mean Absolute Percentage Error (MAPE)

Indikator yang dapat digunakan dalam mengukur keakuratan analisis estimasi adalah MAPE (Mean Absolute Percentage Error). Semakin kecil nilai MAPE dari suatu analisis estimasi maka semakin menunjukkan tingkat keakuratan yang lebih baik dari suatu estimasi. Persamaan MAPE adalah sebagai berikut

$$MAPE = \sum_{t=1}^{T} \frac{PE_t}{T}$$
 (9)

dengan y_t adalah nilai data sebenarnya pada waktu t, f_t adalah nilai data yang telah diestimasi pada waktu t, dan T adalah banyaknya data.

3 PEMBAHASAN

3.1 Koefisien Interpolasi Polinomial dengan Metode Lagrange dan Metode Newton

3.1.1 Koefisien Interpolasi Polinomial Lagrange

Fungsi interpolasi polinomial Lagrange diberikan seperti pada Persamaan (3) dan Persamaan (4). Berdasarkan fungsi interpolasi polinomial Lagrange tersebut dapat dikatakan bahwa nilai $f(x_i)$ merupakan koefisien dari fungsi tersebut sementara $L_i(x)$ pada Persamaan (4) sebagai polinomial Lagrange (Conte & Boor, 1980).

3.1.2 Koefisien Interpolasi Polinomial Newton

Fungsi interpolasi polinomial Newton diberikan seperti pada Persamaan (5), di mana a_0 , a_1 , ..., a_n merupakan koefisien-koefisien fungsi interpolasi polinomial, di mana koefisien-koefisien tersebut dapat ditentukan dengan suatu persyaratan bahwa

 $y_i = f(x_i) = P_n(x_i)$. Perlu diketahui bahwa koefisien interpolasi polinomial Newton dapat ditulis dalam aturan divided difference.

Definisi 3.1.1. Divided Difference

Misalkan diberikan sebanyak n data titik $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$. Misalkan $y_i = f(x_i)$ dengan i = 0, 1, ..., n. Divided difference didefinisikan sebagai

$$f[x_{i}] = f(x_{i}); i \in 0, 1, 2, ..., n$$

$$f[x_{i}, x_{i+1}, ..., x_{i+j}] = \frac{f[x_{i+1}, x_{i+2}, ..., x_{i+j}] - f[x_{i}, x_{i+1}, ..., x_{i+j-1}]}{x_{i+j} - x_{i}}$$
(11)

dengan $i \in 0, 1, 2, ..., n$.

3.2 Estimasi Harga Saham dengan Menggunakan Metode Lagrange dan Metode Newton pada Interpolasi Polinomial

Data yang digunakan merupakan data sekunder, yaitu data harga close saham PT Indosat Tbk. tanggal 1 September 2016 sampai tangal 30 Desember 2016 yang diperoleh dari duniainvestasi.com. Data diurutkan berdasarkan tanggal terjadinya harga saham, yaitu tanggal selain tanggal pada hari Sabtu dan Minggu, sehingga nilai x juga berurutan berdasarkan harga saham tersebut. Analisis harga saham dilakukan dengan mengambil beberapa sampel data. Berikut adalah data Harga Close Saham PT Indosat Tbk. Tanggal 1 September 2016 sampai 30 November 2016 dan sampel data yang akan diolah adalah sebagai berikut dan data yang akan diolah

Tabel 1. Data Harga Close Saham PT Indosat Tbk. Tanggal 1 September 2016 sampai 30 November 2016

No.	Tanggal	Harga Close									
1	01/09/2016	6025	17	26/09/2016	5700	33	18/10/2016	6400	49	09/11/2016	6400
2	02/09/2016	5800	18	27/09/2016	5625	34	19/10/2016	6400	50	10/11/2016	6450
3	05/09/2016	5775	19	28/09/2016	5850	35	20/10/2016	6400	51	11/11/2016	6350
4	06/09/2016	5575	20	29/09/2016	6000	36	21/10/2016	6400	52	14/11/2016	6100
5	07/09/2016	5500	21	30/09/2016	6025	37	24/10/2016	6400	53	15/11/2016	6200
6	08/09/2016	5300	22	03/10/2016	6300	38	25/10/2016	6300	54	16/11/2016	6200
7	09/09/2016	5200	23	04/10/2016	6400	39	26/10/2016	6300	55	17/11/2016	6250
8	13/09/2016	5400	24	05/10/2016	6350	40	27/10/2016	6400	56	18/11/2016	6250
9	14/09/2016	5675	25	06/10/2016	6350	41	28/10/2016	6450	57	21/11/2016	6225
10	15/09/2016	5450	26	07/10/2016	6350	42	31/10/2016	6600	58	22/11/2016	6150
11	16/09/2016	5375	27	10/10/2016	6350	43	01/11/2016	6600	59	23/11/2016	6300
12	19/09/2016	5275	28	11/10/2016	6375	44	02/11/2016	6625	60	24/11/2016	6100
13	20/09/2016	5250	29	12/10/2016	6375	45	03/11/2016	6500	61	25/11/2016	6150
14	21/09/2016	5325	30	13/10/2016	6375	46	04/11/2016	6350	62	28/11/2016	6200
15	22/09/2016	5450	31	14/10/2016	6425	47	07/11/2016	6375	63	29/11/2016	6200
16	23/09/2016	5575	32	17/10/2016	6425	48	08/11/2016	6450	64	30/11/2016	6400

Tabel 2. Sampe Data yang Akan Diolah

No.	Tanggal	Harga Close	No.	Tanggal	Harga Close	No.	Tanggal	Harga Close
1	01/09/2016	6025	19	28/09/2016	5850	45	03/11/2016	6500
2	02/09/2016	5800	21	30/09/2016	6025	47	07/11/2016	6375
3	05/09/2016	5775	23	04/10/2016	6400	49	09/11/2016	6400
4	06/09/2016	5575	25	06/10/2016	6350	51	11/11/2016	6350
5	07/09/2016	5500	27	10/10/2016	6350	53	15/11/2016	6200
6	08/09/2016	5300	29	12/10/2016	6375	55	17/11/2016	6250
7	09/09/2016	5200	31	14/10/2016	6425	56	18/11/2016	6250
8	13/09/2016	5400	33	18/10/2016	6400	57	21/11/2016	6225
9	14/09/2016	5675	35	20/10/2016	6400	59	23/11/2016	6300
11	16/09/2016	5375	37	24/10/2016	6400	60	24/11/2016	6100
13	20/09/2016	5250	39	26/10/2016	6300	61	25/11/2016	6150
15	22/09/2016	5450	41	28/10/2016	6450	62	28/11/2016	6200
17	26/09/2016	5700	43	01/11/2016	6600	63	29/11/2016	6200
						64	30/11/2016	6400

3.2.1 Estimasi Harga Saham dengan menggunakan Metode Lagrange pada Interpolasi Polinomial

Analisis dilakukan dengan menggunakan bantuan software Matlab *R2012b*. Algoritma yang digunakan dalam analisis harga saham dengan metode ini adalah sebagai berikut.

- 1. Memasukkan data variabel x
- 2. Memasukkan data variabel y
- 3. Memasukkan nilai n yang merupakan banyak data pada variabel x
- 4. Menghitung dan menentukan nilai-nilai koefisien fungsi polinomial
- 5. Membentuk fungsi polinomial
- 6. Memasukkan nilai x yang ingin diinterpolasikan, x_t
- 7. Menghitung nilai y berdasarkan fungsi yang dibentuk pada langkah (5) untuk nilai x yang dimasukkan pada langkah (6)
- 8. Menghasilkan nilai interpolasi

Berdasarkan algoritma tersebut, dibentuk script fungsi interpolasi Lagrange yang digunakan untuk melakukan analisis secara numerik numerik sebagai berikut

```
function [yt] = lagrange1(X,Y,Xt)
n = length(X);
yt = 0;
for i = 1:n
    L = Y(i);
    for j = 1:n
        if i ~= j
L = L.*(Xt-X(j))/(X(i)-X(j))
        end
end
yt = yt+L;
end
```

Gambar 1: *Script* Fungsi Interpolasi Polinomial Lagrange Kemudian pada command window Matlab diinput data variabel *x* dan *y* serta me-

Remudian pada command window Matiab diinput data variabel x dan y serta memanggil [yt] = lagrange1(X,Y,Xt). Mengganti masukan X_t dengan nilai x yang ingin diinterpolasi untuk didapatkan nilai interpolasinya.

3.2.2 Estimasi Harga Saham dengan menggunakan Metode Newton pada Interpolasi Polinomial

Algoritma yang digunakan dalam analisis harga saham dengan metode ini sama dengan algoritma yang digunakan dalam analisis harga saham dengan metode Lagrange. Kemudian dibentuk script fungsi interpolasi Newton yang digunakan untuk melakukan analisis secara numerik numerik seperti berikut, dan selanjutnya pada command window Matlab diinput data variabel x dan y serta memanggil [yt] = newton1(X, Y, Xt). Mengganti masukan X_t dengan nilai x yang ingin diinterpolasi untuk didapatkan nilai interpolasinya.

```
function yt = newton1(X,Y,Xt)
n = size(X,1);
if n == 1
n = size(X,2);
end
for i = 1:n
   yt(i,1) = Y(i);
end
   for i = 2:n
        for j = 2:i
        yt(i,j) = (yt(i,j-1)-yt(i-1,j-1))/(X(i)-X(i-j+1));
        end
end
end
yxt = yt(n,n);
   for i = n-1:-1:1
        yxt = yxt*(Xt-X(i))+yt(i,i);
   end
yt = sum(yxt);
end
```

Gambar 2: Script Fungsi Interpolasi Polinomial Newton

Berikut adalah hasil interpolasi dari metode interpolasi Lagrange dan metode interpolasi Newton

Tabel 3. Hasil Interpolasi metode interpolasi Lagrange dan Metode Interpolasi Newton

x_t	Tanggal	y_t	f_t (Lagrange)	$f_t(Newton)$	x_t	Tanggal	y_t	f_t (Lagrange)	$f_t(Newton)$
10	15/09/2016	5450	5717,837	5717,837	34	19/10/2016	6400	6382,898	6382,898
12	19/09/2016	5275	5133,154	5133,154	36	21/10/2016	6400	6421,790	6421,789
14	21/09/2016	5325	5417,083	5417,083	38	25/10/2016	6300	6337,973	6337,972
16	23/09/2016	5575	5517,192	5517,192	40	27/10/2016	6400	6342,181	6342,179
18	27/09/2016	5625	5839,988	5839,988	42	31/10/2016	6600	6555,064	6555,060
20	29/09/2016	6000	5866,681	5866,681	44	02/11/2016	6625	6573,705	6573,676
22	03/10/2016	6300	6257,549	6257,549	46	04/11/2016	6350	6419,488	6419,403
24	05/10/2016	6350	6401,537	6401,537	48	08/11/2016	6450	6380,198	6379,903
26	07/10/2016	6350	6332,654	6332,654	50	10/11/2016	6450	6391,236	6390,818
28	11/10/2016	6375	6365,284	6365,284	52	14/11/2016	6100	6283,972	6281,753
30	13/10/2016	6375	6397,665	6397,665	54	16/11/2016	6200	6174,329	6173,223
32	17/10/2016	6425	6426,540	6426,540	58	22/11/2016	6150	6516,235	6498,548

3.2.3 Perbandingan Keakuratan Hasil Estimasi Harga Saham antara Metode Lagrange dan Metode Newton pada Interpolasi Polinomial

Mensubstitusikan hasil perhitungan analisis yang terdapat pada Tabel 3 ke dalam Persamaan (7) dan Persamaan (8) diperoleh nilai standar deviasi dari analisis data dengan metode Lagrange adalah sebesar 388,827 dengan nilai standar deviasi relatifnya sebesar 6,286% dan nilai standar deviasi dari analisis dengan metode Newton adalah sebesar 388,146 dengan nilai standar deviasi relatifnya sebesar 6,276%.

3.2.4 Perbedaan Galat Estimasi Harga Saham antara Metode Lagrange dan Metode Newton pada Interpolasi Polinomial

Mensubstitusikan hasil interpolasi ke dalam Persamaan (9) dan Persamaan (10) diperoleh nilai MAPE untuk hasil interpolasi Lagrange adalah 1,448% dan nilai MAPE untuk hasil interpolasi Newton adalah 1,435%. Nilai MAPE dari hasil interpolasi yang diperoleh dari analisis dengan menggunakan metode interpolasi polinomial Newton lebih rendah jika dibandingkan dengan nilai MAPE dari hasil interpolasi yang diperoleh dari analisis dengan menggunakan metode interpolasi polinomial Lagrange.

4 PENUTUP

4.1 Kesimpulan

- Analisis estimasi harga saham yang dilakukan dengan menggunakan metode interpolasi polinomial Newton memiliki nilai standar deviasi sebesar 388, 146 dan nilai standar deviasi relatif sebesar 6, 276%, di mana nilai-nilai tersebut lebih rendah jika dibandingkan dengan nilai standar deviasi dari analisis dengan metode Lagrange yang sebesar 388, 827 dan nilai standar deviasi relatif yang sebesar 6, 286%.
- 2. MAPE yang dihasilkan dari hasil analisis dengan metode interpolasi Newton adalah 1,435%, di mana nilai tersebut lebih rendah dari nilai MAPE yang dihasilkan dari hasil analisis dengan metode interpolasi Lagrange adalah 1,448%. Jadi, meskipun perbedaan nilai MAPE dari kedua metode tidak berbeda secara signifikan, jika dibandingkan dengan metode Lagrange, metode Newton lebih baik untuk digunakan dalam kasus ini.

4.2 Saran

- Saran untuk penelitian selanjutnya diharapkan untuk menggunakan polinom berderajat lebih dari 40, dengan jarak pengambilan sampel lebih dari 3 hari untuk mendapatkan nilai MAPE yang rendah.
- Pada penelitian selanjutnya diharapkan untuk menggunakan metode lain untuk dibandingkan dalam mengestimasi harga saham.
- Software yang digunakan pada penelitian selanjutnya diharapkan untuk menggunakan software selain Matlab.

DAFTAR PUSTAKA

- Adiwulyo, Eko. 2016. *Pasar Modal Terus Tumbuh dalam Lima Tahun Terakhir*. [ON LINE]. Tersedia: https://www.marketeers.com/article/pasar-modal-terus-tumbuh-dalam-lima-tahun-terakhir (diakses pada tanggal 25 April 2016 pukul 23:53 WIB).
- Afriyadi, Achmad Dwi. 2016. *BEI Pastikan Pasar Modal Indonesia Tumbuh Positif di 2016*. [ON LINE]. Tersedia: https://bisnis.liputan6.com/read/2426127/bei-pastikan-pasar-modal-Indonesia-tumbuh-positif-di-2016 (diakses pada tanggal 25 April 2016 pukul 23:54 WIB).
- Anonim. 2012. *Interpolating Polynomial*. [ON LINE]. Tersedia: https://www.uwyo.edu/moorhouse/courses/3200/interpolation.pdf (diunduh pada tanggal 2 Agustus 2016 pukul 13:02 WIB).
- Anonim.2012. *Interpolation*. [ON LINE]. Tersedia: https://www.math.niu.edu/dat-tab/MATH435.2013/INTERPOLATION (diunduh pada tanggal 2 Agustus 2016 pukul 13:02 WIB).
- Bohrens, J. 2005. *Numerical Analysis I*. [ON LINE]. Tersedia: https://www-m3.ma.tum.de/foswiki/pub/M3/NumericalAnalysisI0506/Contents/proof-

- 20051219.pdf (diunduh pada tanggal 2 Agustus 2016 pukul 13:02 WIB).
- Burden, Richard L. dan Faires, J. Douglas. 2011. *Numerical Analysis*. New York: Brooks/Cole.
- Conte, S. D. & Boor, Carl de. 1980. *Elementary Numerical Analysis: An Algorithmic Approach*. Edisi ke-3. United States: McGraw-Hill.
- Csuros, Maria. 1997. Environmental Sampling and Analysis: Lab Manual. New York: Lewis Publishers.
- Darmadji, T dan Fakhrudin, M.H. 2006. *Pasar Modal di Indonesia Pendekatan Tanya Jawab*. Jakarta: Salemba Empat.
- Dunia Investasi. 2016. *Data Harga Saham PT Indosat Tbk. Bulan September Sampai Bulan November*. [ON LINE]. Tersedia: https://duniainvestasi.com/bei/price/stock diakses pada tanggal 20 Desember 2016 pukul 19:46 WIB).
- Fakhruddin dan Hadianto, Sopian. 2001. Perangkat dan Model Analisis Investasi di Pasar Modal. Buku Satu. Jakarta: Elex Media Komputindo.
- Fausett, Laurene V. 2003. *Numerical Methods: Algorithms and Applications*. United States: Pearson Education, Inc.
- Gautschi, Walter. 2011. *Numerical Analysis*. Edisi ke-2. New York: Springer Science+Business Media, LLC.
- Hartono, Jogiyanto. 2000. *Teori Portofolio dan Analisis Investasi*. Edisi ke-2 Yogyakarta: UPP AMP YKPN.
- Husnan, Suad. 1996. Teori Portofolio dan Analisis Sekuritas. Yogyakarta: UPP AMP YKPN.
- Hartono, Jogiyanto. 1998. Analisis dan Desain Sistem Informasi: Pendekatan Terstruktur Teori dan Praktek Aplikasi Bisnis. Yogyakarta: Andi Offset.
- Krisnawati, "Implementasi Interpolasi Lagrange untuk Prediksi Nilai Data Berpasangan dengan Menggunakan Matlab", *Seminar Nasional Teknologi ISSN:1978-9777*, 2007.
- Kapitho, Alain G. 2005. *Divided Difference*. [ON LINE]. Tersedia: https://m2matlabdb.ma.tum.de/divided_diff.m?MP_ID=404 (diakses pada tanggal 12 Desember 2016 pukul 21:29 WIB).
- Levy, Doron. 2010. *Introduction to Numerical Analysis*. United States: Universitas Maryland.
- Liembono, R. H. 2015. *Pasar Saham dalam Gambar*. Jakarta: bei5000-RH Liembo- no.
- Muhammad, Dannis, "Penggunaan Metode Newton dan Lagrange pada Interpolasi Polinom Pergerakan Harga Saham Studi Kasus Saham PT Adaro Energi Tbk)", Makalah IF4058 Topik Khusus Informatika I: Metode Numerik-Sem II, 2011
- Munir, Rinaldi. 2003. Metode Numerik. Bandung: Informatika.
- Permana, Dian dan Abdurahman, Wahid. "Prediksi APBN Tahun 2010 Hingga Tahun 2050 dengan Metode Interpolasi Newton", *Seminar Nasional Soft Computing dan Robotika I ISSN: 2088-4176*, 2013.
- Sahid. 2003. Analisis Ketunggalan Polinomial Interpolasi untuk Aproksimasi Fungsi. Laporan Penelitian. Yogyakarya: Universitas Negeri Yogyakarta.
- Yamane, Taro. 1967. *Elementary Sampling Theory*. United States: Prentice-Hall, Inc.