DOI: doi.org/10.21009/0305020209

PENGARUH SUHU AKTIVASI CO2 TERHADAP KAPASITANSI SPESIFIK ELEKTRODA KARBON SUPERKAPASITOR DARI TANDAN KOSONG KELAPA SAWIT

E.Taer^{1,a)}, W.S.Mustika^{1,b)}, R. Taslim²⁾

¹Jurusan Fisika Universitas Riau, Jl. HR. Soebrantas KM 12,5, Pekanbaru 28293

²Jurusan Teknik Industri Universitas Islam Negeri Sultan Syarif Kasim, Jl. HR. Soebrantas No 155, Pekanbaru 28293

email: a)erman_taer@yahoo.com b) widyasintamustika@ymail.com

Abstrak

Pengaruh suhu aktivasi CO_2 dalam pembuatan elektroda karbon superkapasitor terhadap kapasitansi spesifik telah diselidiki dan dianalisa. Elektroda karbon pada penelitian ini dibuat dari limbah tandan kosong kelapa sawit (TKKS) yang diperoleh dari perkebunan rakyat. Pembuatan elektroda diawali dengan pemotongan tongkol TKKS menjadi serpihan-sepihan sepanjang 5 cm, diikuti dengan proses pengilingan, aktivasi kimia menggunakan 0,3 M KOH, penekanan dan dilanjutkan dengan proses karbonisasi pada suhu 800^o C. Aktivasi fisika dilakukan pada suhu 800, 850, dan 900 ^oC dalam lingkungan gas CO₂. Kapasitansi spesifik ditentukan dengan metode siklus voltametri dan didapati sebesar 39,77 F.g⁻¹, 65,84 F.g⁻¹. 45,06 F.g⁻¹, 41,30 F.g⁻¹ masing-masing untuk suhu pengaktifan 0, 800, 850, dan 900 ^oC. Hasil penelitian menunjukkan bahwa suhu 800 ^oC merupakan suhu aktivasi terbaik untuk elektroda karbon dari TKKS. Sebagai tambahan juga dihitung sifat fisika seperti massa, tebal, dan diameter diukur untuk menentukan densitas elektroda. Densitas dari masing-masing elektroda untuk suhu pengaktifan 0, 800, 850, dan 900 ^oC adalah 2,664 g cm⁻³, 1,891 g cm⁻³, 2,045 g cm⁻³, 2,131 g cm⁻³. Sebagai pelengkap juga dilakukan analisa struktur elektroda karbon menggunakan metode *X-Ray Difraction*.

Kata kunci : karbon aktif, tandan kosong kelapa sawit, aktivasi CO₂, superkapasito

Abstract

Effect of CO_2 activation temperature in production of carbon electrode supercapacitor against specific capacitance has been investigated and analyzed. Carbon electrodes in this study were produced from oil palm empty fruit bunches (EFB) waste derived from people's plantations. The electrodes production were begun with cutting the cob into small flake of EFB into 5 cm length, followed by a milling process, chemical activation used a 0.3 M KOH, hydraulic pressing and followed by carbonization process at a temperature of 800 °C. The physical activation was carried out at a temperature of 800, 850, and 900 °C in CO_2 gas environment. Specific capacitance was determined by cyclic voltammetry method and its found to be as high as 39.77 Fg⁻¹, 65.84 Fg⁻¹, 45.06 Fg⁻¹, 41.30 Fg⁻¹ for activation temperature of 0, 800, 850, and 900 °C, respectively . The results showed that the temperature of 800 °C was the best activation temperature in production of carbon electrodes from EFB. In addition, also calculated physical properties such as mass, thickness, and diameter were measured to determine the density of the electrode. The density of each electrode for temperature activation of 0, 800, 850, and 900 °C were 2.664 g cm⁻³, 1.891 g cm⁻³, 2.045 g cm⁻³, 2.131 g cm⁻³, respectively. As a complement, the electrode structure has also analyzed by using X-Ray Difraction method.

Keywords : activated carbon, oil palm empty fruit bunches, activation of CO2, supercapacitor

1. Pendahuluan

Superkapasitor adalah suaatu piranti yang memiliki kemampuan menyimpan atau menghasilkan daya dan energi yang tinggi [1]. *Electrochemical Double Layer Capasitors* (EDLC) merupakan salah satu jenis superkapasitor yang banyak dikembangkan karena bahan utama yang digunakan pada elektroda adalah karbon aktif [2]. Elektroda dari karbon aktif sangat digemari karena harga yang relatif murah, sumber bahan asal yang mudah didapat [3]. Karbon aktif dapat dibuat dari bahan yang mengandung selulosa tinggi, salah

Seminar Nasional Fisika 2016 Prodi Pendidikan Fisika dan Fisika, Fakultas MIPA, Universitas Negeri Jakarta

SNF2016-MPS-49

satunya tandan kosong kelapa sawit (TKKS) yang memiliki kandung selulosa sebesar 45,95 % [4] sehingga TKKS dapat dijadikan sebagai bahan baku pembuatan karbon aktif [5]. Selain itu, ketersedian bahan biomassa dari TKKS cukup berlimpah, pada tahun 2013 tercatat luas lahan kelapa sawit diprovinsi Riau sekitar 2, 19 juta Ha [6]. Persentase berat TKKS untuk setiap tandan buah segar adalah sebesar 20-23 % [7]. Farma et al telah menggunakan serat TKKS dari pabrik pengolahan kelapa sawit sebagai bahan dasar elektoda sel superkapasitor. Kapasitansi spesifik elektroda karbon TKKS adalah sebesar 150 F.g⁻¹ [8]. Pada tulisan ini akan ditunjukkan sifat elektrokimia dan fisika sel elektoda karbon aktif TKKS tanpa pengolahan pabrik yang berasal dari perkebunan rakyat di Riau.

2. Metode Penelitian

2.1. Preparasi Elektroda TKKS

Penelitian diawali dengan preparasi sampel TKKS. Preparasi meliputi beberapa tahapan, yaitu proses penjemuran, pemotongan, perebusan dan pengeringan. Proses pemotongan mengubah tongkol TKKS menjadi serpihan-serpihan berukuran ± 5 cm. Tahap selanjutnya adalah pembuatan elektroda. Tahap ini diawali dengan proses prakarbonisasi pada suhu 280 °C, dilanjutkan dengan proses penggilingan dan penghalusan menggunakan ballmilling selama 20 jam dan diikuti proses pengayakan untuk mendapat serbuk berukuran 38 µm. Tahap berikutnya adalah aktivasi kimia mengunakan 0,3 M kalium hidroksida, dilanjutkan dengan penekanan 8 ton untuk pencetak pelet. Kemudian pelet karbon hijau dari TKKS dikarbonisasi pada suhu 800 °C dalam lingkungan gas N₂ [8]. Proses selanjutnya adalah aktivasi fisika menggunakan gas CO2 dengan suhu aktivasi yang bervariasi, yaitu tanpa perlakuan aktivasi (A0), 800 °C (A800), 850 °C (A850), dan 900 °C (A900). Laju aliran gas sebesar 1,5 liter/menit dan laju kenaikan temperatur 10 °C/menit. Tahap pembuatan elektroda diakhir dengan proses pencucian dan pemolesan untuk menghasilkan pelet karbon aktif murni.

Persiapan elektroda dilanjutkan dengan fabrikasi sel superkapasitor. Tahap ini diawali dengan perendaman elektroda TKKS murni kedalam larutan elektrolit H₂SO₄ selama 24 jam. Struktur sel superkapasitor disusun dalam bentuk *sandwich* yang terdiri dari dua buah elektroda karbon aktif TKKS dan *current collector* dari stainless steel, separator membran kulit telur itik [9], *body supercapasitor* yang terbuat dari akrilik dan teflon sebagai isolator.

2.2. Pengukuran Kapasitansi Spesifik

Pengukuran kapasitansi spesifik sel elektroda superkapasitor dilakukan menggunakan metode *ciclic voltammetri* pada laju scan 1 mV/s dan jendela potensial 0-500 mV/s. Nilai kapasitansi spesifik dihitung berdasarkan persamaan 1.

$$C_{SP} = \frac{(I_c - I_d)}{(s \times m)} \tag{1}$$

Berdasarkan persamaan 1, Csp merupakan nilai kapasitansi spesifik (F.g⁻¹), Ic adalah arus *charge* (mA), Id adalah arus *discharge* (mA), s adalah laju scan (mV/s), dan m merupakan massa elektroda sel superkapasitor (g).

2.3. Pengukuran Sifat Fisis Elektroda

Sifat fisis elektroda TKKS yang dianalisa adalah densitas dan sifat kekristalan elektroda. Densitas didapatkan dari pengukuran massa, diameter, dan tebal masing-masing elektroda, sementara sifat kekristalan elektroda diperoleh dari pengukuran *X-Ray Diffraction* (XRD) menggunakan alat X'Pert-Pro dengan dengan sistem difraktometer kubik, sumber sinar anoda Cu dan panjang gelombang K α 15,406 nm. Sudut difraksi (2 θ) yang digunakan yaitu pada rentang sudut 10 - 100°. Analisa dimensi mikrokristalin menggunakan persamaan Debye-Scherrer sebagai berikut:

$$L_a = \frac{1,94\,\lambda}{\beta\,\cos\,\theta_{(100)}}\tag{2}$$

$$L_{c} = \frac{0.89 \,\lambda}{\beta \,\cos\theta_{(002)}} \tag{3}$$

Berdasarkan persamaan 2 dan 3, L_a dan L_c merupakan dimensi mikrokristalit (Å), λ adalah panjang gelombang (Å), β merupkan *bandwidth* (derajat), $\theta_{(100)}$ adalah sudut difraksi pada bidang hkl 100 (derajat) dan $\theta_{(002)}$ adalah sudut difraksi pada bidang hkl 002 (derajat).

3. Hasil dan Pembahasan

3.1. Kapasitansi Spesifik

Data pengukuran kapasitansi sel superkapasitor diolah menggunakan *software sigma plot* yang disajikan dalam bentuk kurva siklus voltamogram rapat arus versus potensial. Kapasitansi spesifik (Csp) untuk masing-masing variasi elektroda sel superkapasitor dari karbon aktif TKKS disajikan dalam kurva siklus voltamogram seperti pada Gambar 1.

Seminar Nasional Fisika 2016 Prodi Pendidikan Fisika dan Fisika, Fakultas MIPA, Universitas Negeri Jakarta

Gambar 1. Kurva Voltamogram Elektroda TKKS

Gambar 1 menyatakan perbedaan siklus *charge discharge* dari masing-masing pasangan elektroda karbon TKKS pada laju *scan* 1 mV/s. Lebar kurva voltamogram pada Gambar 1 dapat mewakili besarnya kapasitansi spesifik sel superkapasitor. Semakin lebar kurva voltamogram CV maka nilai Csp yang dihasilkan dari pasangan elektroda semakin tinggi [2]. Berdasarkan Gambar 1 didapatkan data pengukuran arus *charge* (Ic) dan *discharge* (Id), serta perhitungan nilai nilai Csp yang disajikan pada Tabel 1.

Tabel 1. Data pengukuran arus charge dan discharge,
serta perhitungan nilai kapasitansi spesifik
elektroda TKKS

Kode	Massa Ic		Id	Csp
	(g)	(mA)	(mA)	$(F.g^{-1})$
A0	0,048	1194	-715	39,77
A800	0,057	2106	-1614	65,84
A850	0,066	1798	-1176	45,06
A900	0,052	1077	-1050	41,30

Harga Csp pada Tabel 1 didapat dari perhitungan menggunakan persamaan 1. Csp tertinggi dihasilkan oleh sampel A800 sebesar 65,84 F.g⁻¹ dan Csp terendah pada sampel A0 sebesar 39,77 F.g⁻¹. Tabel 1 menunjukkan bahwa aktivasi CO₂ pada sampel A800, A850, A900 menghasilkan perbedaan antara arus Ic dan Id yang lebih besar sehingga nilai Csp meningkat. Kenaikan Csp disebabkan aktivasi CO₂ mampu menghasilkan banyak pori kecil [10]. Keberada banyak pori kecil setelah aktivasi CO₂ berperan dalam meningkatkan distribusi ion pada elektroda sehingga Csp meningkat. Disisi lain, kenaikan suhu aktivasi pada sampel A850 dan A900 menyebabkan Csp menurun yang disebabkan oleh proses pemanasan meningkatkan kepadatan elektroda sehingga porositas elektroda berkurang.

3.2. Data Pengukuran Densitas

Densitas diperoleh dari pengukuran massa, tebal, dan diameter elektroda sel superkapasitor setelah pemolesan, berikut pada Tabel 2.

 Tabel 2.
 Data pengukuran massa, tebal, diameter, densitas rata-rata elektroda TKKS

Kode	massa (g)	tebal (cm)	diameter (cm)	densitas (g.cm ⁻³)
A0	0,048	0,012	1,383	2,664
A800	0,057	0,022	1,321	1,891
A850	0,066	0,022	1,367	2,045
A900	0,052	0,018	1,314	2,131

Berdasarkan Tabel 2, densitas terendah elektroda TKKS pada sampel A800 yaitu sebesar 1,891 g.cm⁻³ dan tertinggi pada A0 sebesar 2,664 g.cm⁻³. Perubahan densitas elektroda TKKS dapat dipresentasikan dalam diagram batang densitas rata-rata elektroda seperti Gambar 2.

Seminar Nasional Fisika 2016 Prodi Pendidikan Fisika dan Fisika, Fakultas MIPA, Universitas Negeri Jakarta

Gambar 2. Diagram Densitas Rata-rata Elektroda TKKS

Berdasarkan Gambar 2, terjadi perubahan densitas elektroda setelah proses aktivasi CO_2 . Proses aktivasi fisika menyebabkan penurunan nilai densitas sel elektroda. Hal ini disebabkan oleh aktivasi CO_2 mereduksi pengotor pada sampel sehingga terbentuk pori-pori baru [10]. Kenaikan suhu aktivasi CO_2 meningkatkan nilai densitas sampel. Kenaikan densitas elektroda ini disebabkan oleh pemutusan rantai karbon dengan nonkarbon akibat pemanasan, sehingga kenaikan suhu aktivasi menghasilkan struktur karbon

yang lebih padat. Kenaikan densitas menyebabkan porositas menurun sehingga nilai Csp berkurang [11].

3.3 X-Ray Diffraction (XRD)

Data pengukuran XRD sel superkapasitor diolah menggunakan *software sigma plot* yang dinyatakan dalam bentuk kurva difraktogram intensitas sinar-X versus sudut difraksi 20. Kurva difraktogram disajikan untuk data pengukuran sampel A800 dan A900 seperti pada Gambar 3.

Gambar 3. Kurva difraktogram sampel A800 dan A900

Seminar Nasional Fisika 2016 Prodi Pendidikan Fisika dan Fisika, Fakultas MIPA, Universitas Negeri Jakarta

SNF2016-MPS-52

Gambar 3 menunjukkan bahwa puncak karbon muncul pada sudut difrak (2 θ) sebesar 24,708° (002) dan 44, 553° (100) untuk sampel A800, dan 24,535° (002) dan 44, 731° (100) untuk sampel A900. Puncak karbon muncul pada susut difraksi (2 θ) sebesar 24° (002) dan 44° (100) [8]. Berdarkan Gambar 3, dengan menggunakan persamaan 2 dan 3 maka diperoleh *interlayer* spasi, dimensi mikrokristalit, dan ratio Lc/La yang disajikan pada Tabel 3.

 Tabel 3. Interlayer spasi, dimensi kristalit, dan ratio

 Lc/La

Sampel	d ₀₀₂ (Å)	d ₁₀₀ (Å)	L_{c} (Å)	$L_a(Å)$	L _c /L _a
A800	3,600	2,032	11,256	22,371	0,503
A900	3,625	2,024	11,410	24,102	0,473

Berdasarkan Tabel 3 dinyatakan bahwa kenaikan suhu aktivasi CO₂ menyebabkan perubahan harga Lc dan La, sehingga dapat disimpulkan kenaikan suhu aktivasi CO₂ pada sampel A900 menghasikan perubahan struktur. Kenaikan harga Lc dan La pada sampel A900 menyebabkan perunuran harga Csp [1]. ratio Lc/La berkaitan dengan nilai Csp, bila ratio Lc/La besar maka volume mikropori, jumlah mesopori, dan luas permukaan semakin besar sehingga Csp meningkat [8]. Hubungan dimensi mikrokristalit (Lc) dengan luas permukaan dapat dianalisa dengan rumus empiris S=2/pL_c [12] maka diperoleh luas permukaan sebesar 940 m².g⁻¹ untuk sampel A800 dan 822 m².g⁻¹ untuk sampel A900. Peningkatan luas permukaan sampel Csp. Berdasarkan data A800 meningkatkan nilai perhitungan luas permukaan dapat disimpulkan bahwa kenaikan suhu aktivasi CO2 menyebabkan perubahan struktur lapisan elektroda sehingga luas permukaan elektroda mengecil.

4. Simpulan

Pembuatan sel superkapasitor dari limbah TKKS tanpa pengolahan pabrik telah berhasil dilakukan, dari keseluruhan pengukuran dapat simpulkan bahwa suhu aktivasi CO₂ yang paling sesuai untuk sampel pelet karbon TKKS adalah 800 °C.

Ucapan Terimakasih

Kami mengucapkan terimakasih kepada DP2M DIKTI atas bantuan pendanaan melalui *project* penelitian Hibah Kompetensi tahun 2016 dengan judul Nanokarbon Berbasis Limbah Biomassa sebagai Inti Elektroda Campuran Untuk Superkapasitor.

Daftar Acuan

- [1] E. Taer, Iwantono, S. T. Manik, R. Taslim, D. Dahlan. M, Deraman, Preparation of activated carbon monolith electrodes from sugarcane bagasse by physical and physical-chemical activation process for supercapacitor application, J. Advanced Materials Research.896 (2014), pp. 179-182
- [2] E. Taer, W. S. Mustika, Zulkifli, I.D.M. Syam, R. Taslim, Pengaruh suhu pengaktivan CO₂ terhadap luas permukaan elektroda karbon dan sifat kapasitan sel superkapasitor dari kayu karet. Prosiding Seminar Nasional Fisika Universitas Andalas, Padang (2015), pp. 96-100
- [3] R. Farma, M. Deraman, Awitdrus, I.A. Talib, R. Omar, J.G. Manjunatha, N.H. Basri, B.N.M. Dolah, M.M. Ishak, Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon, Int. J. Electrochem. Sci. 8 (2013), pp. 257 - 273
- [4] D. Darnoko, D. Siahaan, E. Nuryanto, J. Elisabeth, L. Erningpraja, P.L. Tobing, P.M. Naibaho, H. Ryanti, Teknik pengolahan kelapa sawit dan produk turunannya. Pusat Penelitian Kelapa Sawit Medan. (2002).
- [5] M. Islam, I. Dahlan, Productivity and nutritive values of different fractions of oil palm (Elaeis guineensis), J. Animal Sciences. 8 (2000), pp. 1113-1120
- [6] Direktorat Jenderal Perkebunan, Kementerian Pertanian, Statistik perkebunan Indonesia 2013-2015 kelapa sawit, Direktorat Jenderal Perkebunan Jakarta (2014), p. 9
- [7] A. Malik, Disain dan pembuatan mesin pencincang tandan kosong kelapa sawit. Artikel Ilmiah Fakultas Teknik Universitas Andalas. (2007)
- [8] R. Farma, M. Deraman, A. Awitdrus, I.A. Talib, E. Taer, N.H. Basri, J.G. Manjunatha, M.M. Ishak, B.N.M. Dollah, S.A. Hashmi, Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors, J. Bioresource Technology. 132 (2013), pp. 254–261
- [9] E. Taer, Sugianto, M. A. Sumantre, R. Taslim, Iwantono, D. Dahlan, M. Deraman. Eggs shell membrane as natural separator for supercapacitor applications, J. Advanced Materials Research, 896 (2014), pp. 66-69

Seminar Nasional Fisika 2016 Prodi Pendidikan Fisika dan Fisika, Fakultas MIPA, Universitas Negeri Jakarta

- [10] E. Taer, M. Deraman, R. Taslim, Iwantono, Preparation of binderless activated carbon monolith from pre-carbonization rubber wood sawdust by controlling of carbonization and activation condition, AIP Conference Proceedings Padjadjaran International Physics Symposium, Bandung (2013), pp. 33-37
- [11] M. Deraman, S. K. Md. Saad, M.M. Ishak, Awitdrus, E. Taer, I.Talib, R. Omar, M.H. Jumali, Carbon/carbon nanotubes (CNTs) composites from green pellets contain cnts and self-adhesive carbon grains from fibres of oil palm empty fruit bunch, The Third Nanoscience and Nanotechnology Symposium, Bandung (2010), pp. 179-186
- [12] K. Kumar, R.K. Saxena, R.D. Kothari, K. Suri, N.K. Kaushik, and J.N. Bohra, Correlation between adsorption and x-ray diffraction studies on viscose rayon based activated carbon cloth, Carbon 35, 12 (1997), pp. 1842-1844