DESAIN DAN PENGEMBANGAN ELEKTROMAGNET PORTABEL BERBASIS PELAT TEMBAGA
DOI:
https://doi.org/10.21009/03.SNF2019.02.PA.19Abstract
Penemuan elektromagnet telah banyak memberikan pengaruh yang besar terhadap perkembangan ilmu pengetahuan dan teknologi, yang mana oleh karena sifat kemagnetan yang bisa diatur sehingga dapat memberikan manfaat praktis diantaranya motor listrik, relai, generator pembangkit listrik, dan saklar pintu otomatis. Pada penelitian ini dilakukan suatu desain dan rancangan elektromagnet berupa pelat tembaga yang di cetak berbentuk kepingan koin yang terdapat lubang ditengah untuk inti besi. Setiap pelat terdapat isolator yang memisahkan antar tiap pelat yang disusun berulir sehingga terbentuk heliks lilitan pelat tembaga. Hasil eksperimen didapat bahwa rancangan elektromagnet dengan menggunakan pelat tembaga, dapat menghasilkan medan magnet, 0 hingga 4 mTesla, dengan pengukuran menggunakan Gaussmeter. Implikasi pada penelitian ini akan berdampak pada riset fisika maupun ilmu rekayasa yang berkaitan pada penggunaan elektromagnet yang bersifat portabel dan ringkas, selain itu berpotensi untuk dikembangkan agar dapat menghasilkan medan magnet tinggi.
The discovery of electromagnets has had a great influence on the development of science and technology, which is due to the magnetic nature that can be regulated so that it can provide practical benefits including electric motors, relays, generator power plants, and automatic door switches. In this study a design and design of an electromagnet in the form of a printed copper plate was formed in the form of a coin with a hole in the middle for an iron core. Each plate has an insulator that separates between each plate that is arranged in a thread so that a helical coil of copper plate is formed. The experimental results obtained that the electromagnetic design using a copper plate, can produce a magnetic field, 0 to 4 mTesla, with measurements using Gaussmeter. The implications of this study will have an impact on physics research and engineering science related to the use of electromagnets that are portable and compact, besides that they have the potential to be developed in order to produce high magnetic fields.
References
[2] Bird, M.D., Dixon, I.R. and Toth, J., “Design of the Next Generation of Florida-Bitter Magnets at the NHMFL”, IEEE Trans. On Applied Superconductivity, 2004, 14(2), pp. 1253-1254.
[3] Furlani, E.P., “Permanent Magnet and Electromechanical Devices”, Academic Press, 2001, 1-3.
[4] Kolm, H.H., “Advances in the Generation and use of Very High Continuous Magnetic Fields”, Nature, 1961. 192, pp. 299-300.
[5] Kratz, R. and Wyder, P., “Principles of Pulsed Magnet Design”, Springer-Verlag, 2002, 1-53.
[6] Motokawa, M., Awaji, S., Miura, S., Hamai, H., Mogi, I. and Watanabe, K., “Construction of Large Scale Bitter Magnet and its Application to Crystal Growth in Levitating Water”, IEEE Trans. On Applied Superconductivity, 2000, 10(1), pp. 905-906.
[7] Ouden, A., Wulffers, C.A., Hussey, N.E., Laureijs, G., Wijnen, F.J.P., Wulterkens, G.F.A.J., Bird, M.D., Dixon, I.R. and Perenboom, J.A.A., “Progress in the Development of the HFML 45 T Hybrid Magnet”, IEEE Trans. On Applied Superconductivity, 2016, 26(4), pp. 1-3.
[8] Ozerov, M., Bernáth, B., Kamenskyi, D., Meer, A.F.G., Christianen, P.C.M., Engelkamp, H. and Maan, J.C., “A THz Spectrometer Combining the Free Electron Laser FLARE with 33 T Magnetics Fields”, Applied Physics Letter, 110(094106), 2017, pp. 2-5.
[9] Perenboom, J.A.A.J., Maan, J.C., Breukelen, M.R., Wiegers, S.A.J., Ouden, A., Wulffers, C.A., Zande, W.J., Jongma, R.T., Meer, A.F.G. and Redlich, B., “Developments at the High Field Magnet Laboratory in Nijmegen”, Journal of Low Temperature Physics, 2012, 170, pp. 520-522.
[10] Sabulsky, D.O., Parker, C.V., Gemelke, N.D. and Chin, C., “Efficient Continuous-Duty Bitter-Type Electromagnets for Cold Atom Experiments”, Review of Scientific Instruments, 2013, 84(104706), pp. 1-5.
[11] Toth, J. and Bole, S.T., “Design, Construction, and First Testing of a 41.5 T All-Resistive Magnet at the NHMFL in Tallahase”, IEEE Trans. On Applied Superconductivity, 28(3), pp. 1¬4, 2018.
[12] Wang, Z., Wu, J., Yang, W., Bera, A.K., Kamensky, D., Islam, A.T.M.N., Xu, S., Law, J.M., Lake, B., Wu, C. and Loidl, A., “Experimental Observation of Bethe Strings”, Nature, 2018, 554, pp. 221-222.
[13] Wiegers, S.A.J., Rook, J., Ouden, A., Perenboom, J.A.A.J. and Maan, J.C., “Design and Construction of a 38 T Resistive Magnet at the Nijmegen High Field Magnet Laboratory”, IEEE Trans. On Applied Superconductivity, 2012, 22(3), pp. 2-3.
[14] Wijnen, F.J.P., Wiegers, S.A.J., Velsen, J.M.H., Rook, J., Ouden, A., Perenboom, J.A.A.J. and Hussey, N.E., “Construction and Performance of a 38-T Resistive Magnet at the Nijmegen High Field Magnet Laboratory”, IEEE Trans. On Applied Superconductivity, 2016, 26(4), pp. 1-2