KARAKTERISASI SENSOR ARUS DAN TEGANGAN UNTUK APLIKASI MAXIMUM POWER POINT TRACKER PADA SISTEM PENYIMPANAN ENERGI LISTRIK PANEL SURYA
Abstract
Abstrak
Penggunaan sel surya sebagai energi terbarukan dewasa ini semakin meluas. Berbagai upaya dilakukan agar panel surya mampu menghasilkan daya optimal. Salah satunya dengan menggunakan Maximum Power Point Tracker (MPPT). Hal ini bertujuan untuk mengontrol level tegangan keluaran panel surya. Maka dari itu pada penelitian ini dikarakterisasi dua buah sensor tegangan DC dan dua buah sensor arus INA219. Karakterisasi dilakukan menggunakan DC power supply dan enam variasi resistor. Hasil karakterisasi kedua sensor tegangan DC menunjukkan adanya tegangan offset masing-masing sebesar 0,0544 Volt dan 0,0564 Volt dengan kesalahan relatif pengukuran 0,19% dan 0,20%. Kemudian hasil karakterisasi kedua sensor arus INA219 menunjukkan adanya arus offset masing-masing sebesar -0,0291 mA dan 0,1495 mA dengan kesalahan relatif pengukuran 0,83% dan 2,96%. Sensor ini akan digunakan untuk membaca tegangan dan arus pada aplikasi MPPT.
Kata-kata kunci: MPPT, sensor tegangan DC, INA219.
Abstract
Solar cell application as renewable energy today is increasingly widespread. Various attempts were made so that the solar panels can produce optimal power. One of them is by using Maximum Power Point Tracker (MPPT). MPPT is use for controlling the output voltage level of solar panel. Therefore, in this research characterized two DC voltage sensor and two INA219 current sensor. These characterizations are using a DC power supply and six variation of resistor. The result show that each of two DC voltage sensor have an offset voltage are 0,0544 Volt and 0,0564 Volt which have relative error of measurements are 0,19% and 0,20%. Then, the result show to each of two INA219 current sensor have an offset current are -0,0817 mA and 0,1222 mA which have relative error of measurement are 4,48% and 2,44 %. These sensors will use for sensing the voltage and current of MPPT application.
Keywords: MPPT, DC voltage sensor, INA219
References
K. Ranabhat et al., “An introduction to solar cell technology,” J. Appl. Eng. Sci, vol. 14, no. 4, pp. 481-491, 2016, doi: 10.5937/jaes14-10879.
T. Pavlovic, “The Sun and Photovoltaic Technologies,” 2020.
W. Indrasari et al., “Active Solar Tracker Based on the Horizon Coordinate System,” J. Phys. Conf. Ser, vol. 1120, no. 1, 2018, doi: 10.1088/1742-6596/1120/1/012102.
F. M. Hoffmann et al., “Monthly profile analysis based on a two-axis solar tracker proposal for photovoltaic panels,” Renew. Energy, vol. 115, pp. 750-759, 2018, doi: 10.1016/j.renene.2017.08.079.
G. Li et al., “A review of solar photovoltaic-thermoelectric hybrid system for electricity generation,” Energy, vol. 158, pp. 41-58, 2018, doi: 10.1016/j.energy.2018.06.021.
W. Indrasari, Habiburosid and R. Fahdiran, “Characterization of hybrid solar panel prototype using PV-TEG module,” 8Th Natl. Phys. Semin, vol. 2169, no. 1, p. 050005, 2019, doi: 10.1063/1.5132678.
E. Parikesit, D. Purwadianto and F. A. R. Sambada, “Pelacak Matahari Dua Sumbu Menggunakan LDR untuk Meningkatkan Absorbsi Matahari,” Media Tek. Univ. Sanata Dharma, vol. 12, no. 2, pp. 80-90, 2017.
S. Ozcelik, H. Prakash and R. Challoo, “Two-axis solar tracker analysis and control for maximum power generation,” Procedia Comput. Sci, vol. 6, pp. 457-462, 2011, doi: 10.1016/j.procs.2011.08.085.
R. Eke and A. Senturk, “Performance comparison of a double-axis sun tracking versus fixed PV system,” Sol. Energy, vol. 86, no. 9, pp. 2665-2672, 2012, doi: 10.1016/j.solener.2012.06.006.
W. Indrasari et al., “Development of static solar panel equipped by an active reflector based on LDR sensors,” J. Phys. Conf. Ser, vol. 1280, no. 2, 2019, doi: 10.1088/1742-6596/1280/2/022071.
A. Yani, “Pengaruh Penambahan Alat Pencari Arah Sinar Daya Output Solar Cell,” Turbo J. Progr. Stud. Tek. Mesin, vol. 5, no. 2, pp. 82-87, 2016, [Online]. Available: http://ojs.ummetro.ac.id/index.php/turbo.
E. A. Setiawan and K. Dewi, “Impact of two types flat reflector materials on solar panel characteristics,” Int. J. Technol, vol. 4, no. 2, pp. 188-199, 2013, doi: 10.14716/ijtech.v4i2.108.
C. K. Yang et al., “Open-loop altitude-azimuth concentrated solar tracking system for solar-thermal applications,” Sol. Energy, vol. 147, pp. 52-60, 2017, doi: 10.1016/j.solener.2017.03.014.
D. L. Pangestuningtyas, Hermawan, and Karnoto, “Analisis Pengaruh Sudut Kemiringan Panel Surya Terhadap Radiasi Matahari Yang Diterima Oleh Panel Surya Tipe Larik Tetap,” Transient, vol. 2, pp. 0-7, 2013.
J. P. Ram, T. S. Babu and N. Rajasekar, “A comprehensive review on solar PV maximum power point tracking techniques,” Renew. Sustain. Energy Rev, vol. 67, pp. 826-847, 2017, doi: 10.1016/j.rser.2016.09.076.
D. Choudhary and A. R. Saxena, “DC-DC Buck-Converter for MPPT of PV System,” Int. J. Emerg. Technol. Adv. Eng, vol. 4, no. 7, p. 9, 2014.