STUDI KARAKTERISTIK KAVITASI LARUTAN MENGGUNAKAN METODE GELOMBANG BERDIRI ULTRASONIK
DOI:
https://doi.org/10.21009/03.SNF2020.01.FA.23Abstract
Abstrak
Pemisahan partikel merupakan proses untuk mendapatkan zat murni dari suatu zat campuran. Kavitasi adalah terbentuknya gelembung-gelembung dalam aliran fluida akibat penurunan tekanan pada fluida sampai dibawah tekanan uap jenuhnya. Selanjutnya akan erosi kavitasi yaitu pecahnya gelembung–gelembung tersebut akibat tumbukan. Karakteristik kavitasi penting dianalisis dalam sebagai dasar pemisahan partikel. Gelembung kavitasi yang menempel pada partikel yang diberikan iradiasi ultrasonik akan mengarahkan partikel menuju wilayah iradiasi tertinggi. Penelitian ini bertujuan untuk menganalisis karakteristik pergerakan gelembung kavitasi karena iradiasi gelombang berdiri ultrasonik. Variabel yang digunakan dalam penelitian ini adalah jenis larutan, suhu, penambahan SDS (sodium dodecyl sulfate), dan posisi partikel silika pada tiap larutan. Penelitian ini menggunakan tiga jenis larutan yaitu aquades, alkohol, dan campuran alkohol-aquades. Suhu yang digunakan sebesar 28oC dan 100oC. Posisi setiap saat partikel silika dalam larutan yang diiradiasi gelombang berdiri ultrasonik diamati menggunakan kamera Lumix GH5s 4K Mirrorless. Video yang diperoleh selanjutnya diolah dan dianalisis menggunakan software Python. Hasil penelitian menunjukkan bahwa suhu mempengaruhi populasi gelembung kavitasi. Kavitasi pada larutan campuran aquades-alkohol memiliki jumlah kavitasi tertinggi dan kecepatan pemisahan pertikel tercepat dengan waktu 2.5 sekon.
Kata-kata kunci: Ultrasonik, Kavitasi, Pemisahan Partikel, Python.
Abstract
Particle separation is a process to get a pure substance from a mixed substance. Cavitation is the formation of bubbles in the fluid flow due to a decrease in pressure in the fluid until below the saturated vapor pressure, then followed by cavitation erosion due to bubbles collisions. It is interesting to study cavitation phenomena because it is important in the particle separation process. The cavitation bubbles attached to the particles given the irradiation, then it will direct the particles to the highest irradiation region. The purpose of this study was to analyze the movement characteristics of the cavitation bubbles due to ultrasonic standing wave irradiation. The variables used in this study were the type of solution, temperature, the using of SDS (sodium dodecyl sulfate), and the movement of silica particles in each solution. The solution used were distilled water, alcohol, and a mixture of distilled alcohol and water. The solution temperatures were kept on 28oC and 100oC. The silica particles were used to observe the cavitation characteristics of the solution on particle separation. The position of each particle in the solution was observed using the Lumix GH5 4K Mirrorless camera. The data obtained were processed and analyzed using Python software. The results showed that the temperature affected the cavitation bubble population. The aquades-alcohol mixed cavitation has the highest cavitation population and the fastest particle separation speed with a time of 2.5 seconds.
Keywords: Ultrasound, Cavitation, Particle Separation, Python.
References
[2] H. Tsuitsui And C. Ming Ho, “Cell Separation By Non-Inertial Force Fields In Microfluidic
Systems,” Los Angeles: Mechanics Research Communications, vol. 36, pp. 92-103, 2008.
[3] Y. Wu et al., “Generation Of Autologous Platelet-Rich Plasma
By The Ultrasonik Standing Waves,” IEEE Transactions On Biomedical Engineering, 2015.
[4] H. M. Mizutani And T. Saito, “Innovative Use Of Low-Frequency Ultrasound For Particleseparation/Classification: Forces Acting On A Single Particle Held In Waterof 20-Khz-Ultrasound Pressure Fields In Transition States Under Control Of The Acoustic Pressure Amplitude,” Japan: Chemical Engineering Science, vol. 206, pp. 476-488, 2019.
[5] H. Muramatsu et al., “A novel particle separation technique using 20-kHz-order ultrasound irradiation in water,” Journal of Physics: Conference Series, vol. 656, no. 01, p. 012117, 2015, doi:10.1088/1742-6596/656/1/012117.
[6] U. Fritsching And K. Bauckhage, “The Interaction Of Drops And Particles With Ultrasonic Standing Wave Fields,” Bremen, Germany: Built Environment, Wit Press, Www.Witpress.Com, vol. 25, pp. 1743-3509, 1997.
[7] L. Liu et al., “The influence of air content in water on ultrasonic cavitation field,” Ultrasonics Sonochemistry, vol. 21, pp. 566-571, 2014.
[8] N. A. H. Hadi and A. Ahmad, “Experimental Study of the Characteristics of Acoustic Cavitation Bubbles Under the Influence of Ultrasonic Wave," IOP Conf. Series: Materials Science and Engineering, vo. 808, no. 01, p. 012042, 2020.
[9] M. Ashokkumar, “The characterization of acoustic cavitation bubbles – An overview,” 4 Desember 2010.
[10] J. Delly, “Pengaruh Temperatur Terhadap Terjadinya Kavitasi Pada Sudu Pompa Sentrifugal,” 2009.