PENGARUH KALSINASI TERHADAP PEMBENTUKAN POROSITAS ARANG AKTIF DARI LIMBAH ECENG GONDOK
DOI:
https://doi.org/10.21009/03.SNF2022.01.FA.02Abstract
Abstrak
Eceng gondok telah digunakan sebagai prekursor arang aktif dengan aktivator H3PO4, KOH dan ZnCl2. Setelah proses aktivasi sampel arang aktif diberikan perlakukan tanpa kalsinasi dan kalsinasi pada temperatur 800 oC selama satu jam pada suasana gas Ar. Masing-masing sampel arang aktif diuji dengan absorpsi N2 pada 77 K untuk mengetahui luas permukaan spesifik, volume total spesifik pori dan jari-jari pori yang terbentuk. Dari hasil pengujian diperoleh bahwa kalsinasi memberikan pengaruh sangat signifikan terhadap sifat-sifat arang aktif. Kalsinasi arang aktif dengan aktivator KOH memberikan pengaruh yang paling besar terhadap sifat arang aktif dibandingkan dengan aktivator yang lainnya. Arang aktif dengan aktivator KOH yang dikalsinasi memiliki luas permukaan spesifik 365,62 m2/g, volume total spesifik pori 0,42 cm3/g dan radius pori 2,28 nm.
Kata-kata kunci: eceng gondok, arang aktif, karbonisasi, aktivator, kalsinasi
Abstract
Water hyacinth has been used as a precursor for activated charcoal with H3PO4, KOH and ZnCl2 activators. After the activation process, the activated charcoal samples were treated without calcination and calcination at a temperature of 800 oC for one hour in an Ar gas atmosphere. Each sample of activated charcoal was characterized by N2 absorption at 77 K to determine the specific surface area, specific total pore volume and pore radius formed. From the test results, it was found that the calcination had a very significant effect on the properties of activated charcoal. Calcination of activated charcoal with KOH activator has the greatest effect on the properties of activated charcoal compared to other activators. Activated charcoal with KOH activator which was calcined had a specific surface area of 365.62 m2/g, a specific total pore volume of 0.42 cm3/g and a pore radius of 2.28 nm.
Keywords: water hyacinth, activated charcoal, carbonization, activator, calcination
References
[2] Kiplangat Rop et al., “Biodegradable water hyacinth cellulose-graft-poly (ammonium acrylate-co-acrylic acid) polymer hydrogel for potential agricultural application,” Heliyon, vol. 5, no. 3, e01416, 2019.
[3] Mohd. Adib Yahya, Z. Al - Qodah, C. W. Zanariah Ngah, “Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review,” Renewable and Sustainable Energy Reviews, vol. 46, pp. 218-235, 2015.
[4] Devarly Prahas et al., “Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization,” Chemical Engineering Journal, vol. 140, pp. 32-42, 2008.
[5] Norhusna Mohamad Nor et al., “Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control-a review,” Journal of Environmental Chemical Engineering, vol. 1, pp. 658-666, 2013.
[6] Williams, T. Paul, A. R. Reed, “Pre-formed activated carbon matting derived from the pyrolysis of biomass natural fibre textilewaste,” Journal of Analytical and Applied Pyrolysis, vol. 70, no. 2, pp. 563-577, 2003.
[7] Soegiarto Adi Soenjaya et al., “Preparation of carbon fiber from water hyacinth liquid tar,” International Journal of Industrial Chemistry, vol. 6, no. 1, pp. 1-7, 2015.
[8] O. Nurhilal et al., “Synthesis of high quality porous carbon from Water Hyacinth,” Key Engineering Materials, vol. 860, pp. 173-177, 2020.
[9] O. Ioannidou, A. Zabaniotou, “Agricultural residues as precursors for activated carbon production - a review,” Renewable and sustainable energy reviews, vol. 11, no. 9, pp. 1966-2005, 2007.
[10] Francisco Sotomayor, A. Katie Cychosz, Matthias Thommes, “Characterization of Micro/ Mesoporous Materials by Physisorption: Concepts and Case Studies,” Acc. Mater. Surf. Res, vol. 3, no. 2, pp. 34-50, 2018.
[11] J. Hayashi et al., “Preparation of activated carbon from lignin by chemical activation,” Carbon, vol. 38, no. 13, pp. 1873-1878, 2000.
[12] Zan Gao et al., “Biomass-derived renewable carbon materials for electrochemical energy storage,” Materials Research Letters, vol. 5, no. 2, pp. 69-88, 2017.