Objek Pembelajaran Digital Fisika (DiLO-Phy): bahan ajar multi representasi menggunakan sway
DOI:
https://doi.org/10.21009/03.SNF2022.02.PF.03Abstract
Abstrak
Penelitian ini bertujuan untuk menghasilkan bahan ajar digital learning object of physics (DiLO-Phy) berbasis multi representasi menggunakan aplikasi sway untuk mata pelajaran fisika materi gelombang bunyi SMA kelas XI. DiLO-Phy ini dirancang sebagai bahan ajar yang dioperasikan secara mandiri. Penelitian ini menggunakan metode penelitian dan pengembangan (reasearch and development) dengan metode 4D (define, design, develop, disseminate). Langkah pengembangan pada penelitian ini terdiri dari sepuluh langkah, yaitu menganalisis kurikulum dan kompetensi dasar materi, mengidentifikasi karakteristik peserta didik, memilih tugas-tugas pokok yang harus dikuasai, merumuskan tujuan pembelajaran, memilih media pembelajaran, merancang format isi, membuat kerangka model bahan ajar DiLO-Phy, melaksanakan evaluasi formatif untuk kelayakan bahan ajar DiLO-Phy, merevisi berdasarkan evaluasi kelayakan produk, melakukan uji coba terbatas pada peserta didik. Berdasarkan hasil uji kelayakan, diperoleh rata-rata persentase capaian untuk ahli materi sebesar 96.5% dan ahli media sebesar 81%. Uji coba produk dilakukan kepada guru fisika SMA dengan rata-rata persentase capaian sebesar 94.20% dan peserta didik kelas XI sebesar 82.43%. Rata-rata nilai tersebut menunjukkan bahwa kualitas bahan ajar DiLO-Phy berbasis multi representasi mendapatkan nilai sangat layak dan dapat digunakan sebagai bahan ajar bagi guru dan peserta didik kelas XI.
Kata-kata kunci: Bahan Ajar, Digital Learning Object, Multi Representasi, Sway, 4D
Abstract
This study aims to produceteaching materials digital learning object of physics multi-representation based (DiLO-Phy) using the sway application for physics subjects in high school sound wave material for class XI. DiLO-Phy designed as a teaching material that is operated independently. This research used research and development methods (research and development) with the 4D method (define, design, develop, disseminate). The development steps in this study consisted of ten steps, namely analyzing the curriculum and basic competencies of the material, identifying the characteristics of students, choosing the main tasks that must be mastered, formulating learning objectives, selecting learning media, designing content formats, creating a model framework for DiLO-Phy teaching materials, carry out formative evaluations for the feasibility of DiLO-Phy teaching materials, revise based on product feasibility evaluations, conduct limited trials on students. Based on the results of the feasibility test, the average percentage of achievement for material experts is 96.5% and media experts is 81%. Product trials were carried out on high school physics teachers with an average percentage of achievement of 94.20% and class XI students of 82.43%. The average value indicates that the quality of DiLO-Phy teaching materials based on multi-representation gets a very decent score and can be used as teaching material for teachers and students of class XI.
Keywords: Teaching Materials, Digital Learning Objects, Multi Representation, Sway, 4D
References
[2] L. Lacy, “Chapter 5: Learning Resources: Forms of Media,” Counterpoints, JSTOR, vol. 174, pp. 123-158, 2002.
[3] K. A. Aka, “Pemanfaatan Teknologi Informasi Dan Komunikasi (Tik) Sebagai Wujud Inovasi Sumber Belajar Di Sekolah Dasar,” ELSE (Elementary School Education Journal): Jurnal Pendidikan Dan Pembelajaran Sekolah Dasar, vol. 1, pp. 28-37, 2017, http://journal.um-surabaya.ac.id/index.php/pgsd/article/view/1041.
[4] K. Agraria, D. A. N. Tata, “Pertanahan, B., & Tahun, N,” Transformasi Digital (Issue September), 2019.
[5] M. Mutoharoh & D. Ambarwulan, “Evaluation of the use of the Moodle Platform for Fundamental Physics Lectures at University,” Jurnal Penelitian & Pengembangan Pendidikan Fisika, vol. 7, no. 2, pp. 169-176, 2021. https://doi.org/10.21009/1.07209.
[6] N. Afif, “Pengajaran dan Pembelajaran di Era Digital. IQ (Ilmu Al-Qur’an),” Jurnal Pendidikan Islam, vol. 2, no. 1, pp. 117-129, 2019, https://doi.org/10.37542/iq.v2i01.28.
[7] Kusnandar, “Pengembangan Bahan Belajar Digital Learning Object,” Jurnal Teknodik, vol. 17, no. 1, pp. 583-595, 2013, https://jurnalteknodik.kemdikbud.go.id/index.php/jurnalteknodik/article/view/69.
[8] LSTC, “Learning technology standards committee website,” 2000, http://ltsc.ieee.org/.
[9] P. Khoirun Nissa & B. Lorenza Dheanti, “The E-Learning Design for Problem Based Learning in Dynamic Fluid Topic using Microsoft Sway,” Jurnal Penelitian & Pengembangan Pendidikan Fisika, vol. 7, no. 2, pp. 115-22, 2021, https://doi.org/10.21009/1.07203.
[10] Z. Z. Anderson, “the effect of an interactive computer-based simulation prior to performing a laboratory inquiry based experiment on students’ conceptual understanding of physics,” American Journal of Physics, 618-629, 2003.
[11] D. Hammer, “Student resources for learning introductory physics,” American Journal of Physics, vol. 68, vol. S1, pp. S52-S59, 2000, https://doi.org/10.1119/1.19520.
[12] J. C. R. Tseng et al., “Development of an adaptive learning system with two sources of personalization information,” ELSEVIER Computers and Education, vol. 51, pp. 776-786, 2008, https://doi.org/10.1016/j.compedu.2007.08.002.
[13] Y. Theasy, Wiyanto & Sujarwata, “Multi-representation ability of students on the problem solving physics,” Journal of Physics: Conference Series, vol. 983, no. 1, 2018, https://doi.org/10.1088/1742-6596/983/1/012005.
[14] M. Li, Y. Zhang & Y. Wang, “Gender Gap in Mathematics and Physics in Chinese Middle Schools,” A Case Study of a Beijing’s District, Urban Rev, vol. 49, pp. 568-584, 2017, https://doi.org/10.1007/s11256-017-0409-x
[15] L. Roucoules & F. Demoly, “Multi-scale and multi-representation CAD models reconciliation for knowledge synthesis,” CIRP Annals, vol. 69, no. 1, pp. 137-140, 2020, https://doi.org/10.1016/j.cirp.2020.04.089.
[16] O. Maria, S. Annett & E. F. Hans, “Multiple Representation In Physics And Science Education – Why Should We Use Them?,” Springer International Publishing, 2017.
[17] Trianto, “Mendesain Model Pembelajaran Inovatif-Progresif,” Kencana Prenada Media, 2010.
[18] K. P. Lestari, H. Nasbey & R. Raihanati, “The Development of “Poster Equipped with Video (POSEVI)” on Fluids at Rest Topic for 11th Grade Students,” Jurnal Penelitian & Pengembangan Pendidikan Fisika, vol. 7, no. 1, pp. 91-98, 2021, https://doi.org/10.21009/1.07110.
[19] B. Usodo, I. Kurniawati & Y. Kuswardi, “Pelatihan Penerapan Beberapa Aplikasi Dari Microsoft : Office Mix , Onenote , Sway Dalam Pembelajaran Bagi Guru-Guru Matematika,” Jurnal Elektronik Pembelajaran Matematika, vol. 4, no. 9, pp. 743-752, 2016.
[20] H. Tms & J. Sirait, “Representations Based Physics Instruction to Enhance Students’ Problem Solving,” American Journal of Educational Research, vol. 4, no 1, pp. 1-4, 2016, https://doi.org/10.12691/education-4-1-1.