SINTESIS DAN KARAKTERISASI KOMPOSIT KARBON/SULFUR DARI KARBON BERPORI DARI ECENG GONDOK UNTUK KATODA BATERAI LITIUM-SULFUR
DOI:
https://doi.org/10.21009/03.1101.FA02Abstract
Abstrak
Limbah dan gulma biomassa bisa dimanfaatkan sebagai matrik karbon pada baterai litium sulphur. Baterai litium-sulfur memiliki potensi untuk memenuhi kebutuhan penyimpanan energi listrik selain baterai litium-ion karena memiliki kapasitas teoritis dan energi spesifk yang lebih tinggi dan biaya produksi yang lebih rendah. Namun, baterai ini memiliki kelemahan, yaitu, konduktivitas sulphur yang rendah, kelarutan poli-sulfida yang tinggi selama proses pengisian-pengosongan dan perubahan volume setelah mengalami lithiasi sempurna. Untuk mengatasi beberapa kelemahan ini, diperlukan matrik untuk sulfur yang memiliki konduktivitas tinggi, luas permukaan spesifik yang besar dan kemampuan untuk mengikat polisulfida yang terbentuk selama proses redoks. Salah satu matrik yang sering digunakan adalah karbon berpori. Pada penelitian ini telah dilakukan pembuatan karbon berpori dari eceng gondok dengan suhu karbonisasi 600 oC yang diaktivasi dengan ZnCl2 30%. Selanjutnya karbon berpori tersebut dibuat sebagai komposit dengan sulfur. Komposit karbon/sulphur selanjutnya digunakan sebagai katoda baterai dengan anoda dari litium. Hasil karakterisasi karbon berpori dan komposit katoda karbon/sulfur diperoleh beberapa parameter, antara lain luas permukaan spesifik karbon berpori 642,39 m2/g, konduktivitas karbon berpori adalah 3,93 S/m, kandungan sulfur pada komposit katoda karbon/sulfur 58% dan konduktivitas komposit karbon/sulfur 2,24x10-2 S/m. Kandungan sulphur pada elektroda sebesar 6,0 mg/cm2. Hasil pengukuran elektrokimia sel baterai diperoleh kapasitas pengisian dan pengosongan masing-masing sebesar 395,8 mAh/g dan 315 mAh/g. Pengisian dan pengosongan ulang dilakukan hingga 50 siklus dengan kapasitas pengisian dan pengosongan stabil pada rentang 110-119 mAh/g dan 66-70 mAh/g dengan efisiensi coulomb rata-rata 70,2%.
Kata-kata kunci: baterai litium-sulfur, eceng gondok, kapasitas, karbon berpori, sulfur
Abstract
Waste and weed biomass can be used as a carbon matrix in lithium sulfur batteries. Litium-sulfur batteries have the potential to meet the demand for electrical energy storage other than lithium-ion batteries because they have higher theoretical and specific energy capacities and lower production costs. However, this battery has disadvantages, namely, low sulfur conductivity, high poly-sulfide solubility during the charge-discharge process and volume changes after complete lithiation. To overcome some of these drawbacks, a matrix for sulfur is required which has high conductivity, large specific surface area and the ability to bind polysulfides formed during the redox process. One matrix that is often used is porous carbon. In this research, the manufacture of porous carbon from water hyacinth with a carbonization temperature of 600 oC has been carried out which is activated with 30% ZnCl2. Furthermore, the porous carbon is made as a composite with sulfur. The carbon/sulphur composite is then used as the cathode of the battery with the anode of lithium. The results of the characterization of porous carbon and carbon/sulfur cathode composites obtained several parameters, including a specific porous carbon surface area of 642.39 m2/g, the conductivity of porous carbon was 3.93 S/m, the sulfur content of the carbon/sulfur cathode composite was 58% and the conductivity of the carbon/sulfur composite is 2.24x10-2 S/m. The sulfur content in the electrode is 6.0 mg/cm2. The results of the electrochemical measurements of the battery cells obtained that the charging and discharging capacities were 395.8 mAh/g and 315 mAh/g, respectively. Charging and discharging is carried out up to 50 cycles with stable charge and discharge capacities in the range of 110-119 mAh/g and 66-70 mAh/g with an average coulomb efficiency of 70.2%.
Keywords: lithium-sulfur battery, water hyacinth, capacity, porous carbon, sulfur
References
[2] Eftekhari, Ali, D. W. Kim, “Cathode materials for litium–sulfur batteries: A practical perspective,” Journal of Materials Chemistry A, vol. 5, no. 34, pp. 17734-17776, 2017.
[3] Arumugam Manthiram, Yongzhu Fu, Yu-Sheng Su, “Challenges and Prospects of Litium Sulfur Batteries,” Accounts of Chemical Research, vol. 46, no. 5, pp. 1125-1134, 2013.
[4] P. Adelhelm et al., “From lithium to sodium: Cell chemistry of room temperature sodium-air and sodium-sulfur batteries,” Beilstein Journal Nanotechnol, vol. 6, no. 1. pp. 1016-1055, 2015.
[5] Zhang, S. Sheng, “Liquid electrolyte litium/sulfur battery: Fundamental chemistry, problems, and solutions,” Journal of Power Sources, vol. 231, pp. 153-162, 2013.
[6] Swiderska Mocek, Agnieszka, R. Rudnicka, “Litium sulphur battery with activated carbon cloth-sulphur cathode and ionic liquid as electrolyte,” Journal Power Sources, vol. 273, pp. 162-167, 2015.
[7] N. Jayaprakash, J. Shen, “Chemcal International edition,” vol. 123, pp. 6026-6030, 2011.
[8] Zeng et al., “Green and facile fabrication of hierarchical N-doped porous carbon from water hyacinths for high performance litium/sodium ion batteries,”. Sustainable Energy Fuels, vol. 2, no. 4, pp. 855-861, 2018.
[9] O. Nurhilal et al., “High Sulfur Content of Mesoporous Activated Carbon Composite Derived from Water Hyacinth,” Sustainability, vol. 13, no. 22, p. 12880, 2021, https://doi.org/10.3390/su132212880Sheng-Heng Chung and Arumugam Manthiram.
[10] Masud Rana et al., “Review on areal capacities and long-term cycling performances of litium sulfur battery at high sulfur loading,” Energy Storage Materials, vol. 18, pp. 289-310, 2019.
[11] Yang et al., “Microporous carbon derived from Apricot shell as cathode material for litium-sulfur battery,” Microporous Mesoporous Materials. vol. 204, pp. 235-241, 2015.
[12] Wei She et al., “Sulfur-TiO2 yolk- shell nanoarchitecture with internal void space for long-cycle litium-sulfur batteries,” Nature Communications, vol. 4, no. 1, pp. 1331-1336, 2013.
[13] Zhang et al., “Three-dimensional carbon fiber as current collector for lithium/sulfur batteries,” Ionics, vol. 20, no. 6, pp. 803-808, 2014.