ULASAN UMUM: PENERAPAN DIELEKTROFORESIS KONVENSIONAL SEBAGAI METODE IDENTIFIKASI BAKTERI MONOCOCCUS

  • Muhammad Ridho Pratama Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta, Jl. Rawamangun Muka No. 01, Rawamangun 13220, Indonesia
  • Delila Septiani Dwi Putri Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta, Jl. Rawamangun Muka No. 01, Rawamangun 13220, Indonesia
  • Fadli Handoyo Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta, Jl. Rawamangun Muka No. 01, Rawamangun 13220, Indonesia
  • Umiatin Umiatin Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta, Jl. Rawamangun Muka No. 01, Rawamangun 13220, Indonesia

Abstract

Abstrak

Ilmu Biosensor telah mendorong adanya perkembangan dalam bidang biofisika. Hal ini ditandai dengan adanya metode penentuan sifat dielektrik dari sampel biologi dengan menggunakan gaya Dielektroforesis. Dielektroforesis (DEP) merupakan metode yang menitikberatkan interaksi pada partikel dielektrik dalam medan listrik tak seragam. Oleh karena itu, metode ini banyak digunakan dalam proses analisis sel yang muatannya cenderung bersifat dielektrik. Setiap sel memiliki ciri khas melalui permitivitas bahannya, dimana parameter tersebutlah yang menjadi kunci dalam identifikasi sel dengan metode DEP. Identifikasi ini membutuhkan data permitivitas yang akan menjadi identitas sel tersebut. Sehingga, pustaka permitivitas sel perlu dikaji terlebih dahulu dengan mengkarantina sel murni dan mengamati laju terminal sel dalam medium tertentu. Manuskrip ini secara umum mengulas kajian mengenai identifikasi permitivitas yang menjadi ciri khas dari setiap sel. Adapun jenis sel yang ditinjau adalah sel bakteri monococcus. Kajian ini diharapkan dapat menjadi rujukan bagi para peneliti untuk memanfaatkan teknik DEP dalam ilmu biosensor. Dari ulasan kajian tersebut disimpulkan bahwa dielektroforesis (DEP) dapat digunakan sebagai metode identifikasi sel bakteri monococcus dengan menganalisis permitivitas bahan dan medium yang digunakan, hal ini disebabkan karena setiap sel memiliki spektrum frekuensi karakteristiknya sendiri.

Kata-kata kunci: dielektroforesis, dielektrik, permitivitas, bakteri monococcus, medan listrik

Abstract

Biosensor science has driven developments in the field of biophysics. This is indicated by the dielectric properties of biological samples using the dielectrophoresis force. Dielectrophoresis (DEP) is a method that focuses on the interactions of dielectric particles in a non-uniform electric field. Therefore, this method is widely used in the analysis of cells whose charges tend to be dielectric. Each cell has its own characteristics through the permittivity of the material, where these parameters are the key in finding cells using the DEP method. This identification requires permittivity data that will be the identity of the cell. Thus, the cell permittivity library needs to be studied first by quarantining the cells first and observing the cell terminal rates in certain media. This manuscript generally reviews the study of permission to be a characteristic of each cell. The type of cell being reviewed is a monococcal bacterial cell. This study is expected to be a reference for researchers to utilize the DEP technique in biosensors. From this review, it is concluded that dielectrophoresis (DEP) can be used as a method of identification monococcal bacterial cells by analyzing the permittivity of the material and medium used, this is because each cell has its own characteristic frequency spectrum.

Keywords: dielectrophoresis, dielectric, permittivity, monococcal bacteria, electric field

References

Prayuda, S. T. Achmad, W. H. Akbar Putra, “Analisis Kemampuan Pendeteksian Pengujian Eddy Current terhadap Crack Toe pada Sambungan Tee Material Alumnium 5083 yang Dilapisi Non-Conductive Coating dengan Variasi Kedalaman dan Panjang Crack,” Jurnal Teknik ITS, vol. 10, no. 1, pp. 14-21, 2021.

Nuri et al., “Penentuan Jenis Muatan Sel Darah Merah melalui Metode Dielektroporesis,” Variabel, vol. 3, no. 1, pp. 5-11, 2020.

M. Azam, “Pengujian Bahan Untuk Elektroda Pada Sistem Dielektroforesis,” Youngster Physics Journal, vol. 6, no. 2, pp. 186-190, 2017.

Wulandari, Ike Wahyuni, “Studi Literatur Review: Integrasi Kurikulum Pembelajaran Cerdas Biosensor Menggunakan Teknologi Internet of Things,” Jurnal Tiarsie, vol. 18, no. 3, pp. 97-101, 2021.

F. Amanah, “Pengaruh Konsentrasi Bakteri Asam Laktat Lactobacillus Casei Dan Lama Fermentasi Terhadap Karakteristik Kimia Tepung Kulit Singkong (Manihot Esculenta) Terfermentasi,” PhD dissertation, Universitas Islam Negeri Maulana Malik Ibrahim, 2020.

B. Sarno et al., “Dielectrophoresis: Developments and applications from 2010 to 2020,” Electrophoresis, vol. 42, no. 5, pp. 1-54, 2020.

S. Mahabadi, H. L. Fatima, P. H. Michael, “Effects of cell detachment methods on the dielectric properties of adherent and suspension cells,” Electrophoresis, vol. 36, no. 13, pp. 1493-1498, 2015.

Farahdiana et al., “Kepenggunaan Dielektroforesis (Dep) Di Dalam Pengasingan Zarah Bagi Aplikasi Buah Pinggang Tiruan,” Jurnal Kejuruteraan, Teknologi dan Sains Sosial, vol. 3, no. 2, pp. 40-46, 2017.

M. Azam et al., “Penentuan Konduktivitas Listrik dan Frekuensi Karakteristik Sel Ragi dengan Memanfaatkan Proses Dielektroforesis,” Majalah Ilmiah Biologi BIOSFERA: A Scientific Journal, vol. 27, no. 1, pp. 17-21, 2010.

S. Siagian et al., “Analisis Jumlah Muatan Listrik Serta Energi Pada Kapasitor Berdasarkan Konstanta Dielektrik Suatu Material,” ORBITA: Jurnal Kajian, Inovasi, dan Aplikasi Pendidikan Fisika, vol. 7, no. 1, pp. 176-180, 2021.

M. Sidi, B. Pahlanop Lapanporo, Y. Arman, “Perbandingan Kapasitansi dari Beberapa Jenis Bahan Menggunakan Kapasitor Silinder,” PRISMA FISIKA, vol. 8, no. 2, pp. 128-134, 2020.

Parnasari et al., “Studi Kapasitansi dan Konstanta Dielektrik Pada Karbon Aktif Tandan Kosong Kelapa Sawit,” PRISMA FISIKA, vol. 10, no. 1, pp. 98-104, 2022.

Holderman et al., “Identifikasi Bakteri Pada Pegangan Eskalator Di Salah Satu Pusat Pembelanjaan Di Kota Manado,” Jurnal Ilmiah Sains, vol. 17, no. 1, pp. 13-18, 2017.

Boleng, Didimus Tanah, “Morfologi dan Struktut Halus (Ultrastrucuture),” in Bakteriologi Konsep-Konsep Dasar, Malang: UMM Press, vol. 5, no. 1, pp. 27-42, 2015.

Koentjoro et al., “Sel Bakteri dan Struktur Dasar Penyusunnya,” In Dinamika Struktur Sel Bakteri, Surabaya: Jakad Media Publishing, vol. 1, no. 1, pp. 3-24, 2017.

Wagiranti, Hafidah, “Pembelajaran Biologis Beorientasi Wikipedia Untuk Meningkatkan Penguasaan Konsep dan Mengukur Keterampilan Literasi Informasi Pada Materi Bakteri,” PhD Thesis, FKIP UNPAS, 2019.

M. V. Kanevsky et al., “Electrophysical sensor systems for in vitro monitoring of bacterial metabolic activity,” Journal Pre-proof, vol. 10, pp. 3-27, 2022.

M. Elitas et al., “Dielectrophoresis as a single cell characterization method for bacteria,” Biomedical Physiscs & Engineering Express, vol. 3, no. 1, pp. 1-7, 2017.

Hasanuddin, “Bakteri Coccus Pada Pekasam Durian Makanan Khas Bengkulu,” Agro Industri, vol. 7, no. 1, 2017.

Restuaty, Ayu, “Uji Kualitaws Bakteri Escherichia Coli Pada Depot Air Minum Isi Ulang Di Kecamatan Bandung Wetan,” PhD dissertasi, FKIP UNPAS, 2016.

Wiranti, Ana, “Penentuan Frekuensi Karakteristik Sel Saccharomyces Cereviseae Pada Proses Dielektroforesis Menggunakan Elektroda Kawat Sejajar,” PhD dissertasi, FMIPA, Universitas Dipenogoro, 2016.

Alfiyah Dini, “Pengaruh Medan Elektromagnetik Pada Bakteri Staphylococcus aureus,” PhD dissertasi, FST Universitas Airlangga, 2012.

Tirono, Mokhamad, “Efek Medan Listrik Ac Terhadap Pertumbuhan Bakteri Klebsiella Pneumoniae,” Jurnal Neutrino, vol. 5, no. 2, pp. 116-122, 2013.

Mitic, V. Vojislav et al, “Clausius–Mossotti relation fractal modification,” Ferroelectrics, vol. 536, no. 1, pp. 60-76, 2018.

M. Salsabila, “Medan Listrik Berpulsa Untuk Menghambat Pertumbuhan Bakteri Salmonella Typhi Pada Susu Sapi Murni,” PhD dissertasi, FST UIN Maulana Malik Ibrahim, 2019.

Mustain, A. V. Fitrotin, “Pengaruh Konsentrasi Larutan Sukrosa Terhadap Nilai Konstanta Dielektrik Menggunakan Sensor Kapasitor,” PhD dissertasi, FMIPA, Universitas Jember, 2017.

S. L. Kusakari et al., “High voltage electric fields have potential to create new physical pest control systems,” Insects, vol. 11, no. 7, pp. 1-14, 2020.

Dell' Anna, Luca, M. Merano, “Clausius-Mossotti Lorentz-Lorenz relations and retardation effects for two-dimensional crystals,” Physical Review A, vol. 93, no. 5, pp. 1-6, 2016.

Dendi Hari, Sulistiyo, “Dampak Ukuran Butir Nanopartikel Copper Ferrite (Cufe2o4) Terhadap Sifat Dielektrik,” Jurnal Mekanikal, vol. 8, no. 2, pp. 777-783, 2017.

Griffiths, J. David, “Electric Fields In Matter,” In Introduction to Electrodynamics Fourth Edition, United States of America: Pearson Education Inc, vol. 4, no. 4, pp. 185-208, 2013.

Akl, A. Alaa, A. Safwat Mahmoud, “Effect of growth temperatures on the surface morphology, optical analysis, dielectric constants, electric susceptibility, Urbach and bandgap energy of sprayed NiO thin films,” Optik, vol. 127, pp. 783-793, 2018.

Yaghjian, D. Arthur D, “Maxwell's definition of electric polarization as displacement,” Progress In Electromagnetics Research M, vol. 88, pp. 65-72, 2020.

Didik, A. Lalu A, “Pengaruh Pemberian Medan Magnet Terhadap Konstanta Dielektrik Material AgCrO2,” KONSTAN, vol. 2, no. 1, pp. 1-4, 2016.

Griffiths, J. David, “Electric Fields In Matter,” In Introduction to Electrodynamics Fourth Edition, United States of America: Pearson Education Inc, vol. 4, no. 1, pp. 167-173, 2013.

Giancoli, C. Douglas C, “Gerak Rotasi”, In Fisika Prinsip dan Aplikasi, Jakarta: Erlangga, vol. 8, no. 4, pp. 258-259, 2014.

Jin, W. Chang, “Fabrication of a Dielectrophoretic Particle Trap,” In Conferences UWM Undergraduate Research Symposium, Milwaukee, p. 168, 2019.

C. Marios et al., “Simultaneous Tunable Selection and Self-Assembly of Si Nanowires from Heterogeneous Feedstock,” ACS Nano, vol. 10, no. 4, pp. 1-36, 2016.

Yousuff et al., “Microfluidic device for Multitarget separation using DEP techniques and its applications in clinical research,” In 2020 Sixth International Conference on Bio Signals, Images, and Instrumentation (ICBSII), IEEE, pp. 1-6, 2020.

Abd Rahman et al., “Dielectrophoresis for Biomedical Sciences Applications: A Review,” Sensors, vol. 17, no. 3, pp. 1-27, 2017.

Z. Talukder et al., “Dielectrophoretic separation of bioparticles in microdevices: A review,” Electrophoresis, vol. 35, no. 5, pp. 671-713, 2014.

M. Ammam, “Electrophoretic Deposition Under Modulated Electric Fields: a Review,” RSC ADVANCES, vol. 2, no. 20, pp. 7633-7646, 2012.

R. A. Serway, J. W. Jewett, “Fluids Mechanics,” in Ninth Edition Phyisic for Scientists and Engineers with Modern Physics, Boston: Cengage Learning, vol. 14, no. 5, pp. 427-430, 2014.

D. Banerjee et al., “Odd viscosity in chiral active fluids,” Nature communications, vol. 8, no. 1, pp. 1-12, 2017.

Lubis, A. Nur, “Pengaruh Kekentalan Cairan Terhadap Waktu Jatuh Benda Menggunakan Falling Ball Method,” Fisitek : Jurnal Ilmu Fisika dan Teknologi, vol. 2, no. 2, pp. 27-28, 2018.

Giancoli, “Fluids,” In Physics Principles With Applications, Michigan: Prentice-Hall, vol. 10, no. 11, p. 279, 2015.

Yang, Hongli et al., “General formulas for drag coefficient and settling velocity of sphere based on theoretical law,” International Journal of Mining Science and Technology, vol. 25, no. 2, pp. 219-223, 2015.

C. Zhang et al., “Determination of the scalar friction factor for nonspherical particles and aggregates across the entire Knudsen number range by direct simulation Monte Carlo (DSMC),” Aerosol Science and Technology, vol. 46, no. 10, pp. 1065-1078, 2012.

F. M. White, “Dimensional Analysis and Similarity,” In Fluid Mechanics 8Th Edition In SI Units, Noida : Mc Graw Hill India, vol. 5, no. 4, pp. 304-313, 2017.

G. J. Rubinstein, J. J. Derksen, S. Sundaresan, “Lattice Boltzmann simulations of low-Reynolds-number flow past fluidized spheres: effect of Stokes number on drag force,” Journal of Fluid Mechanics, vol. 788, pp. 576-601, 2016.

Gopalakrishnan et al., “The electrical mobilities and scalar friction factors of modest-to-high aspect ratio particles in the transition regime,” Journal of Aerosol Science, vol. 82, pp. 24-39, 2015.

Wang et al., “Clausius-Mossotti Relation Revisited: Media with Electric and Magnetic Response,” arXiv preprint arXiv:2008.09178, 2020.

B. Sarno et al., “Dielectrophoresis: Developments and applications from 2010 to 2020,” Electrophoresis, vol. 42, no. 5, pp. 539-564, 2021.

J. Cottet et al., “MyDEP: a new computational tool for dielectric modeling of particles and cells,” Biophysical journal, vol. 116, no. 1, pp. 12-18, 2019.

M. Azam, “Simulasi Numerik Gaya Dielektroforesis Pada Biopartikel Berbentuk Bola,” Youngster Physics Journal, vol. 6, no. 2, pp. 110-114, 2017.

B. Techaumnat et al., “Study on the discrete dielectrophoresis for particle-Cell separation,” ELECTROPHORESIS, vol. 41, no. 1-11, pp. 991-1001, 2020.

M. Elitas et al., “Dielectrophoresis as a single cell characterization method for bacteria,” Biomedical Phys. Eng. Express, vol. 3, no. 1, pp. 2-8, 2017.

Published
2023-01-31
How to Cite
Ridho Pratama, M., Septiani Dwi Putri, D., Handoyo, F., & Umiatin, U. (2023). ULASAN UMUM: PENERAPAN DIELEKTROFORESIS KONVENSIONAL SEBAGAI METODE IDENTIFIKASI BAKTERI MONOCOCCUS. PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL), 11(1), FA-53. https://doi.org/10.21009/03.1101.FA09