STUDI STRUKTUR KRISTAL LAPISAN TIPIS SENG OKSIDA DENGAN DOPING MAGNESIUM (ZNO:MG) 0.08 MOL MENGGUNAKAN TEKNIK PENGHALUSAN RIETVELD

Authors

  • Putri Lidya Sari Program Studi Fisika, FMIPA Universitas Negeri Jakarta, Jl. Rawamangun Muka No. 01, Rawamangun 13220, Indonesia
  • Iwan Sugihartono Program Studi Fisika, FMIPA Universitas Negeri Jakarta, Jl. Rawamangun Muka No. 01, Rawamangun 13220, Indonesia
  • Setia Budi Program Studi Kimia, FMIPA Universitas Negeri Jakarta, Jl. Rawamangun Muka No. 01, Rawamangun 13220, Indonesia
  • Achmad Ainul Yaqin FMIPA Universitas Negeri Jakarta, Jl. Rawamangun Muka No. 01, Rawamangun 13220, Indonesia

DOI:

https://doi.org/10.21009/03.1101.FA11

Abstract

Abstrak

Pada penelitian ini telah dilakukan pendeposisian lapisan tipis ZnO tanpa doping dan dengan doping Mg menggunakan teknik teknik Ultrasonic Spray Pyrolysis (USP) di atas substrat silicon (Si) pada suhu 450oC dengan frekuensi 1.7 MHz selama 15 menit. Zinc Acetate Dyhydrate [Zn(CH3COO)2] digunakan sebagai prekusor Zn dan Mg(CH3COO)24H2O sebagai prekusor Mg dengan konsentrasi 0.08 mol. Struktur kristal lapisan tipis ZnO tanpa doping dan dengan doping Mg (0.08 mol) dianalisis menggunakan teknik difraksi sinar-x (XRD). Berdasarkan pola XRD terkonfirmasi bahwa struktur kristal dari lapisan tipis ZnO dan ZnO:Mg adalah polikristalin dengan bentuk hexagonal wurtzite. Analisis struktur kristal lebih lajut pada lapisan tipis ZnO tanpa doping dan dengan doping Mg akan dilakukan menggunakan teknik penghalusan Rietveld agar diperoleh data yang lebih baik.

Kata-kata kunci: Lapisan tipis ZnO, Doping Mg, XRD, Teknik Penghalusan Rietveld

Abstract

This research has been carried out in the form of undoped and Mg-doped ZnO (ZnO:Mg) thin films using Ultrasonic Spray Pyrolysis (USP) technique which has deposited on the silicon (Si) substrate at 450oC with ultrasonic frequency of 1.7 MHz for 15 minutes. Zinc Acetate Dyhydrate [Zn(CH3COO)2] were used as precursor of Zn and the compound sources of Mg(CH3COO)24H2O were used as precursor of Mg with the composition of 0.08 mol. Crystal structure of undoped and Mg-doped ZnO thin films has been investigated using X-Ray Diffraction (XRD). As a result, acquired from XRD pattern reveals that the growth of undoped and Mg-doped ZnO thin films has polycrystalline with hexagonal wurtzite structure. In addition, the crystal structure of undoped and Mg-doped ZnO thin films would be analyzed meticulously using Rietveld refinement method in order to get appropriate data.

Keywords: ZnO Thin Films, Mg dopant, XRD, Rietveld Refinement Method

References

[1] A. El Hamidi et al., “The effect of electronegativity on optical properties of Mg,” International Journal for Light and Electron Optics, vol. 241, pp. 1-9, 2021.
[2] V. Devi et al., “Structural and optical properties of Cd and Mg doped zinc oxide thin films deposited by pulsed laser deposition,” in International Conference on Recent Trends in Physics, 2014.
[3] M. Nemiwal, T. C. Zhang, D. Kumar, “Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity,” Science of the Total Environment, vol. 767, p. 144896, 2021.
[4] I. Sugihartono et al., “The effect of Al Element on Electrochemical Impedance of ZnO Thin Films,” in The 4th International Conference on Applied Physics and Materials Application, 2020.
[5] A. Vanaja, K. Srinivisa Rao, “Effect of Co Doping on Structural and Optical Properties of Zinc Oxide Nanoparticles Synthesized by Sol-Gel Method,” Advances in Nanoparticles, pp. 83-89, 2016.
[6] M. Salah et al., “Rietveld refnement of X ray difraction, impedance spectroscopy and dielectric relaxation of Li doped ZnO sprayed thin flms,” in Applied Physics A Materials Science and Processing, 2019.
[7] N. Guermat et al., “Investigation of structural, morphological, optical and electrical properties of Co/Ni co-doped ZnO thin films,” Journal of Molecular Structure, pp. 1-7, 2021.
[8] M. Rouchdi et al., “Synthesis and Characteristics of Mg doped ZnO Thin Films: Experimental and ab-initio Study,” Result in Physics, vol. 7, pp. 620-627, 2017.
[9] Md Nasrul Haque, Mia et al., “Influence of Mg content on tailoring optical bandgap of Mg-doped ZnO thin film prepared by sol-gel method,” Results in Physics, vol. 7, pp. 2683-2691, 2017.
[10] N. H. Hasyim et al., “Properties of undoped ZnO and Mg doped ZnO thin films by sol-gel method for optoelectronic applications,” Australian Ceramic Society, vol. 53, no. 2, pp. 421-431, 2017.
[11] X. Wang, H. Wang, “Structural Analysis of Interstratified Illite-Smectite by the Rietveld Method,” Crystals, vol. 11, no. 3, p. 244, 2021.
[12] M. Shkir et al., “Investigation on structural, linear, nonlinear and optical limiting properties of sol-gel derived nanocrystalline Mg doped ZnO thin films for optoelectronic applications,” Journal of Molecular Structure, vol. 1173, pp. 375-384, 2018.
[13] A. F. A. Naim, A. Solieman, E. R. Shaaban, “Correlation between structural, optical, and electrical properties of sol-gel-derived ZnO thin films,” Journal of Ovonic Research, vol. 18, no. 3, pp. 373-388, 2022.
[14] Yunasfi et al., “Analisis dan Karakterisasi Znxfe(3-X)O4 Sebagai Penyerap Gelombang Mikro pada Peralatan Telekomunikasi,” Indonesian Journal of Nuclear and Science Technology, vol. 19, no. 2, pp. 53-60, 2018.
[15] A. Mukminin, “Quantitative Phase and Crystal Parameters Analyses Of Golden Apple Snail Shell Ash (Pomacea canaliculata) Results Of High Temperature Calcination Using Rietveld Methode,” Jurnal Chemurgy, vol. 2, no. 2, pp. 15-19, 2018.
[16] B. Astuti et al., “Structure, morphology, and optical properties of ZnO:Mg thin film prepared by sol-gel spin coating method,” Jurnal Ilmiah Pendidikan Fisika Al-BiRuNi, vol. 10, no. 2, pp. 241-250, 2021.

Downloads

Published

2023-01-31

How to Cite

Lidya Sari, P., Sugihartono, I., Budi, S., & Ainul Yaqin, A. (2023). STUDI STRUKTUR KRISTAL LAPISAN TIPIS SENG OKSIDA DENGAN DOPING MAGNESIUM (ZNO:MG) 0.08 MOL MENGGUNAKAN TEKNIK PENGHALUSAN RIETVELD. PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL), 11(1), FA–77. https://doi.org/10.21009/03.1101.FA11