ANALISIS MORFOLOGI DAN KOMPOSISI LAPISAN KOMPOSIT NI-ALN DENGAN METODE ELEKTRODEPOSISI MENGGUNAKAN SCANNING ELECTRON MICROSCOPY-ENERGY DISPERSIVE SPECTROSCOPY (SEM-EDS)

  • Grace Natalia Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta, Jalan Rawamangun Muka, Jakarta 13320, Indonesia
  • Esmar Budi Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta, Jalan Rawamangun Muka, Jakarta 13320, Indonesia
  • Iwan Sugihartono Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta, Jalan Rawamangun Muka, Jakarta 13320, Indonesia

Abstract

Abstrak

Dalam tulisan ini, telah dilakukan pembentukan lapisan komposit Ni-AlN untuk mengkaji pengaruh variasi rapat arus terhadap morfologi permukaan dan komposisi lapisan. Proses pelapisan dilakukan dengan metode elektrodeposisi. Lapisan komposit Ni-AlN terbentuk pada substrat Tungsten Karbida (WC) dengan komposisi larutan elektrolit yang terdiri dari 0.17 M NiCl2.6H2O, 0.38 M NiSO4.6H2O, 0.49 M H3BO3, 0.6 g/l Sodium Dodecyl Sulfate dan partikel serbuk penguat AlN sebesar 10 g/l. Elektrodeposisi pada substrat dilakukan selama 30 menit dan variasi rapat arus yang digunakan sebesar 0.4 mA/mm2, 0.6 mA/mm2, dan 0.8 mA/mm2. Lapisan komposit Ni-AlN dikarakterisasi dengan menggunakan SEM-EDS (Scanning Electron Microscopy-Energy Dispersive Spectroscopy). Hasil menunjukkan bahwa morfologi permukaan dan komposisi lapisan komposit Ni-AlN dipengaruhi oleh rapat arus yang digunakan.

Kata-kata kunci: Elektrodeposisi, Rapat Arus, Lapisan Komposit Ni-AlN, Morfologi, Komposisi

Abstract

In this paper, the coating process of the Ni-AlN composite coating has been carried out to study the effect of various current density on the surface morphology and composition of the coating. The coating process was conducted by the electrodeposition method. The Ni-AlN composite coating was formed on Tungsten Carbide substrate with the electrolyte solution consisting of 0.17 M NiCl2.6H2O, 0.38 M NiSO4.6H2O, 0.49 M H3BO3, 0.6 g/l Sodium Dodecyl Sulfate and 10 g/l AlN reinforcing powder particles. The coating were electrodeposited on the substrate for 30 minutes and various electrodeposition current densities of 0.4 mA/mm2, 0.6 mA/mm2, and 0.8 mA/mm2. The Ni-AlN composite coating was characterized by using SEM-EDS (Scanning Electron Microscopy-Energy Dispersive Spectroscopy). The results showed that the surface morphology and composition of the Ni-AlN composite coating were influenced by the current density used.

Keywords: Electrodeposition, Current Density, Ni-AlN Composite Coating, Morphology, Composition

References

E. Budi et al., “Crystal Structure and Corrosion of Electrodeposited Ni-TiAlN Composite Coatings,” Journal of Technology and Social Science (JTSS), vol. 1, pp. 54-61, 2017.

Z. Yang et al., “Study on Characteristics and Microstructure of Ni-AlN Thin Coatings Prepared via Different Electrodeposition Techniques,” International Journal of Electrochemical Science, vol. 17, pp. 1-12, 2022.

D. K. Rahman, E. Budi, H. Nasbey, “Kajian Pengaruh Variasi Temperatur Terhadap Struktur Kristal Berbagai Lapisan Komposit Nikel,” in Prosiding Seminar Nasional Fisika, 2020.

C. Ma et al., “Ultrasonic-assisted electrodeposition of Ni-Al2O3 nanocomposites at various ultrasonic powers,” Ceramics International, pp. 1-9, 2019.

C. Raghavendra et al., “A review on Ni based nano composite coatings,” in Materials Today: Proceedings, vol. 39, pp. 6-16, 2020.

E. Budi et al., “Komposisi Dan Morfologi Permukaan Lapisan Komposit Ni-TiAIN Elektrodeposisi,” in Prosiding Bidang Fisika, Semirata 2015 Bidang MIPA BKS-PTN Barat, 2015

W. Li, Y. Zhu, F. Xia, “Microstructure and erosion characteristics of Ni-AlN thin films prepared by electrodeposition,” Science and Engineering of Composite Materials, vol. 23, no. 4, pp. 395-400, 2016.

M. Alizadeh, A. Cheshmpish, “Electrodeposition of Ni-Mo/Al2O3 nano-composite coatings at various deposition current densities,” Applied Surface Science, vol. 466, pp. 433-440, 2019.

H. Maharana, B. Bishoyi, A. Basu, “Current density dependent microstructure and texture evolution and texture evolution related effects on properties of electrodeposited Ni-Al coating,” Journal of Alloys and Compounds, vol. 787, pp. 483-494, 2019.

F. Hidayanti, A. A. Harnovan, “Application Of Scanning Electron Microscopy: A Review,” International Journal of Applied Science and Engineering Review, vol. 1, no. 6, pp. 91-102, 2020.

A. Sujatno et al., “Studi scanning electron microscopy (SEM) untuk karakterisasi proses oxidasi paduan zirkonium,” Jurnal Forum Nuklir (JFN), vol. 9, no. 2, pp. 44-50, 2015.

C. Ma et al., “Jet pulse electrodeposition and characterization of Ni–AlN nanocoatings in presence of ultrasound,” Ceramics International, vol. 44, no. 5, pp. 5163-5170, 2018.

G. Yasim et al., “Exploring the Nickel–Graphene Nanocomposite Coatings for Superior Corrosion Resistance: Manipulating the Effect of Deposition Current Density on its Morphology, Mechanical Properties, and Erosion-Corrosion,” Advance Engineering Materials, vol. 20, no. 7, 2018.

R. Mousavi, F. Deflorian, M. E. Bahrololoom, “Morphology, Hardness, and Wear Properties of Ni-Base Composite Coating Containing Al Particle,” Coatings, vol. 10, no. 4, p. 346, 2020.

E. Budi et al., “Structure and mechanical properties of electrodeposited Ni-AlN/Si3N4 composite coating,” Journal of Physics: Conference Series, vol. 1317, no. 1, 2019.

K. Ali et al., “Synthesis and Performance Evaluation of Pulse Electrodeposited Ni-AlN Nanocomposite Coatings,” HIndawi Scanning, 2018.

A. B. Radwan, R. Shakoor, “Aluminum nitride (AlN) reinforced electrodeposited Ni–B nanocomposite coatings,” Ceramics International, vol. 46, no. 7, p. 9863-9871, 2020.

Published
2023-01-31
How to Cite
Natalia, G., Budi, E., & Sugihartono, I. (2023). ANALISIS MORFOLOGI DAN KOMPOSISI LAPISAN KOMPOSIT NI-ALN DENGAN METODE ELEKTRODEPOSISI MENGGUNAKAN SCANNING ELECTRON MICROSCOPY-ENERGY DISPERSIVE SPECTROSCOPY (SEM-EDS). PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL), 11(1), FA-97. https://doi.org/10.21009/03.1101.FA14