PENERAPAN PADUAN BAHAN PARAMAGNETIK ALUMINIUM-LITIUM (AL-LI ALLOY) GENERASI KETIGA SEBAGAI BAHAN BAKU STRUKTURAL SAYAP PESAWAT TERBANG: SEBUAH KAJIAN
DOI:
https://doi.org/10.21009/03.1101.FA19Abstract
Abstrak
Bahan paramagnetik adalah bahan yang memiliki magnetisasi sejajar dengan medan magnetnya. Material yang termasuk ke dalam paramagnetik adalah Aluminium dan Litium. Aluminium dapat dipadukan dengan unsur-unsur logam lain, yakni dengan Cuprum, Litium, Magnesium, dan lain-lain. Paduan aluminium mempunyai konduktivitas listrik dan panas yang tinggi serta tahan korosi. Di dalam industri dirgantara, paduan Aluminium-Litium banyak digunakan sebagai penyusun struktur pesawat terbang. Komponen utama pada pesawat terbang yang paling kompleks dan berfungsi untuk menghasilkan gaya aerodinamika dengan memanfaatkan perbedaan tekanan udara dari bagian atas dan bawah strukturnya adalah sayap pesawat. Struktur sayap pesawat membutuhkan bahan yang bersifat elastis, tensile, memiliki ketahanan tinggi, tahan korosi, dan toleransi kerusakan. Tulisan ini merupakan suatu kajian naratif berdasarkan jurnal nasional dan internasional yang bertujuan untuk memberikan informasi mengenai karakteristik dan penerapan paduan Al-Li generasi ketiga sebagai bahan baku struktural sayap pesawat terbang. Hasil kajian menunjukkan bahwa pengembangan paduan Al-Li generasi ketiga berpotensi untuk digunakan pada struktur kerangka sayap pesawat terbang dikarenakan paduan Al-Li memiliki massa jenis yang relatif rendah, modulus spesifik tinggi, tahan korosi, dan tahan retak fatik, dimana sesuai dengan syarat yang dibutuhkan oleh kerangka sayap pesawat terbang.
Kata-kata kunci: Bahan paramagnetik, Paduan Aluminium-Litium, Struktur sayap pesawat
Abstract
Paramagnetic materials are materials that have a magnetization parallel to their magnetic field. Materials that are classified as paramagnetic are Aluminum and Lithium. Aluminum can be combined with other metal elements, e.g. Cuprum, Lithium, Magnesium, etc. Aluminum alloys have high electrical and thermal conductivity, and corrosion-resistant. In the aerospace industry, Aluminum-Lithium alloys are widely used as a constituent of aircraft structures. The main component with the most complex aircraft and generates aerodynamic forces by utilizing the difference in air pressure from the top and bottom of the structures is the wing of the aircraft. The aircraft wing structure requires materials that are elastic, tensile, high resistance, corrosion resistance, and damage tolerance. This paper is a narrative study based on national and international journals that aims to provide information on the characteristics and application of third-generation Al-Li alloys as structural raw materials for aircraft wings. The results of the study show that the development of the third generation Al-Li alloys has the potential to be used in aircraft wing component structures because the Al-Li alloys has a relatively lower density, high specific modulus, corrosion resistance, and fatigue crack growth resistance, which is accordance with the required requirements of airplane wing structures.
Keywords: Paramagnetic materials, Aluminium-Lithium Alloy, Aircraft wing structure
References
[2] Wahyuni, Sri, “Analisis Terhadap Keselamatan Penumpang Pesawat Terbang yang Mengalami Pecah Ban Menurut Undang-Undang Perlindungan Konsumen,” Jurnal Hukum Sasana, vol. 5, no. 2, 2019.
[3] Syahrul Fahmi, Arsy, “Analisis Pengaruh Posisi Horizontal Stabilizer pada Nilai Koefisien Drag dan Lift dari Ekor Pesawat N-2xx Berbasis Computational Fluid Dynamics,” Dissertasi, Institut Teknologi Sepuluh Nopember, 2018.
[4] Hanif Ibrahim et al., “Pengaruh Sudut Tekuk (Cant) Winglet Menggunakan Airfoil Naca 2215 pada Aerodinamika Sayap Pesawat,” ROTOR, vol. 3, pp. 41-45, 2017.
[5] M. M. Lubis, “Analisis Aerodinamika Airfoil NACA 2412 Pada Sayap Pesawat Model Tipe Glider dengan Menggunakan Software Berbasis Computational Fluid Dynamics untuk Memperoleh Gaya Angkat Maksimum,” e-Dinamis, vol. 2, no. 2, pp. 23-33, 2012.
[6] G. Yuvaraj, K. Veeranjaneyulu, “Buoyancy lift augmentation,” Journal of Aeronautics & Aerospace Engineering, vol. 5, no. 4, 2016.
[7] T. H. G. Megson, “Aircraft Structures for Engineering Students,” 6th. Oxford, United Kingdom: Butterworth-Heinenmann, 2017.
[8] J. K. Joseph, “Design, Modal And Stress Analysis of Aircraft Composite Wing,” International Journal of Engineering Research & Technology (Ijert), 2015.
[9] Handoko, Bayu, Abu Bakar, “Analisis Optimasi Tebal Rib Sayap Pesawat Wig in Ground Effect 2 Seat,” Jurnal Industri Elektro dan Penerbangan, vol. 4, no. 2, pp. 41-50, 2014.
[10] Marshall, M. Timothy, “Lithium as a Nutrient,” Journal of American Physicians and Surgeons, vol. 20, no. 4, pp. 104-109, 2015.
[11] T. Dursun, C. Soutis, “Recent developments in Advanced Aircraft Aluminium Alloys,” Materials & Design (1980-2015), vol. 56, pp. 862-871, 2014.
[12] Mouritz, P. Adrian, “Materials and Material Requirements for Aerospace Structures and Engines (3),” in Introduction to Aerospace Materials, First Edition, United Kingdom: Woodhead Publishing, 2012.
[13] N. E. Prasad et al., “Aerostructural Design and Its Application to Aluminum-Lithium Alloys,” in Aluminum-lithium alloys: Processing, properties and applications, Amsterdam etc.: Elsevier/Butteworth-Heinemann, 2014.
[14] R. J. Rioja, J. Liu, “The evolution of Al-Li Base products for aerospace and Space Applications,” Metallurgical and Materials Transactions A, vol. 43, no. 9, pp. 3325-3337, 2012.
[15] A. Daniélou et al., “Fatigue resistance of Al-Cu-Li and comparison with 7xxx aerospace alloys,” ICAA13 Pittsburgh, pp. 511-516, 2012.
[16] G. G. Setyoaji, H. Ismoyo, W. Achmad, “Analisa Statis Struktur Wing Box Pesawat Udara dengan Equivalent Plate Model,” Jurnal Teknik Mesin S-1, vol. 4, no. 1, 2016.
[17] A. A. El-Aty et al., “Experimental investigation of tensile properties and anisotropy of 1420, 8090 and 2060 Al-Li alloys sheet undergoing different strain rates and fibre orientation: A comparative study,” Procedia Engineering, vol. 207, pp. 13-18, 2017.
[18] D. J. Griffiths, “Magnetic Fields in Matter,” in Introduction to Electrodynamics, Harlow: Pearson Education, 2014.
[19] Veryyon Harahap, “Pembuatan Material Komposit BaFe12O19 /Zn) pada Bidang Radiologi,” Ahli Media Press, Malang, 2021.
[20] R. A. Serway, J. W. Jewett, V. Peroomian, “Physics for Scientists and Engineers with Modern Physics,” Cengage learning, Australia, 2014.
[21] P. F. Kelly, “Electricity and Magnetism,” CRC Press, Boca Raton, 2015.
[22] Omar Alī Muḥammad, “Elementary solid state physics,” principles and applications, Reading, MA: Addison-Wesley Publ. Co., 2015.
[23] A. A. Aziz, Kiryanto, A. W. B. Santosa, “Analisa Kekuatan Tarik, Kekuatan Tekuk, Komposisi dan Cacat Pengecoran Paduan Aluminium Flat Bar dan Limbah Kampas Rem dengan Menggunakan Cetakan Pasir dan Cetakan Hidrolik sebagai Bahan Komponen Jendela Kapal,” Jurnal Teknik Perkapalan, vol. 5, no. 1, 2017.
[24] Sheller Mimi, “Aluminum Dream: The Making of Light Modernity,” Cambridge: Massachusetts Institute of Technology, 2014.
[25] M. Timothy, Marshall, “Lithium as a Nutrient,” Journal of American Physicians and Surgeons, vol. 20, no. 4, 2015.
[26] C. L. Zou, G. H. Geng, W. Y. Chen, “Development and application of aluminium-lithium alloy,” Applied Mechanics and Materials, vol. 599, pp. 12-17, 2014.
[27] Cahyono et al., “Pengujian Karakteristik Baterai Lithium-Ion Dengan Metode Fuzzy Dengan Beban Bervariasi,” Jurnal Arus Elektro Indonesia, vol. 6, no. 3, pp. 82-86, 2020.
[28] A. Amiruddin, F. A. Lubis, “Analisa Pengujian Lelah Material Tembaga dengan Menggunakan Rotary Bending Fatigue Machine,” Mekanik: Jurnal iImiah Teknik Mesin, vol. 4, no. 2, 2018.
[29] Puput, Martabet, “Analisa Kandungan Polifenol Pada Pucuk Daun Teh Hasil Perkebunan Kemuning Menggunakan Metode Analisis Spektrofotometri Visible (Analyze The Content of Polyphenols Tea Leaves of Plantation of Kemuning Using Visible Spektrofotometri Analysis Method),” International Research Journal of Engineering and Technology (IRJET), vol. 4, no. 10, 2017.
[30] Ambri, Ramandeep Kaur, “Spars and Stringers-Function and Designing,” International Journal of Aerospace and Mechanical Engineering, vol. 1, no. 1, 2014.
[31] M. A. Soler, “Fundamentals of Aerospace Engineering: An introductory course to aeronautical engineering,” Madrid: Create Space, 2017.
[32] Federal Aviation Administration (FAA), “Pilot's Handbook of Aeronautical Knowledge,” Oklahoma: United States Department of Transportation, 2016.
[33] Sofia Swedberg, Mats Svalstedt, “Commercial Aircraft Wing Structure: Design of a Carbon Fiber Composite Structure,” Skolan för teknikvetenskap (SCI), 2020.
[34] Triawan Ramadhan, “Analisa Performansi Flap Pesawat N-2xx Terhadap Perubahan Gap dan Overlap di Pt. Dirgantara Indonesia,” Doctoral dissertation, Institut Teknologi Sepuluh Nopember, 2016.
[35] S. F. Arsy, “Analisis Pengaruh Posisi Horizontal Stabilizer pada Nilai Koefisien Drag dan Lift dari Ekor Pesawat N-2xx Berbasis Computational Fluid Dynamics,” Dissertasi, Institut Teknologi Sepuluh Nopember, 2016.
[36] G. Wijiatmoko, “Analisis Aerodinamika Sudut Defleksi Spoiler Pesawat Terbang,” Seminar Nasional dan Gelar Produk, pp. 256-261, 2017.
[37] Sunardi, A. T. Pratiwi, Erlian Suprianto, “Pengendalian Kualitas Produk pada Proses Produksi RIB A320 di Sheet Metal Forming Shop,” Jurnal Industri Elektro dan Penerbangan, vol. 5, no. 2, 2020.
[38] R. JIAO, X. HE, Y. LI, “Individual Aircraft Life Monitoring: An engineering approach for fatigue damage evaluation,” Chinese Journal of Aeronautics, vol. 31, no. 4, pp. 727-739, 2018.
[39] B. Bodily et al., “Advanced Aluminum And Aluminum–Lithium Solutions for Derivative and Next Generation Aerospace Structures,” SAE Technical Paper, 2012.
[40] R. Ivanov et al., “Hardening potential of an Al-cu-Li Friction Stir Weld,” ICAA13 Pittsburgh, Springer, Cham, pp. 659-664, 2012.