ALAT PERAGA PEMBELAJARAN FISIKA SMA BERBASIS ARDUINO MATERI GAYA APUNG
DOI:
https://doi.org/10.21009/03.1102.PF30Abstract
Abstrak
Makalah ini membahas tentang alat peraga pembelajaran fisika berbasis Arduino materi gaya apung. Langkah pengembangan yang dilakukan meliputi: 1) merancang perangkat keras 2) merancang perangkat lunak, dan 3) uji coba alat peraga. Alat peraga akan di validasi oleh ahli materi fisika dan ahli media pembelajaran fisika. Perancangan perangkat keras terdiri dari Laptop/PC, Arduino nano, Kabel USB Micro, Sensor Load Cell, Amplifier Load Cell, Power Supply, gelas ukur, fluida (zat cair), tiang static, silinder bermassa m, meja yang dapat diubah ketinggiannya. Perancangan perangkat lunak menggunakan bahasa pemrograman C++, dengan sistem operasi windows, Arduino IDE 1.8.12, USB Driver dan Microsoft Excel. Alat nantinya akan diuji dengan cara menggantungkan silinder bermassa m dan gelasukur yang sudah diisi zat cair yang sebelumnya sudah di rangkai dan terhubung dengan sensor load cell. Ketinggian dari gelas ukur akan diubah sehingga silinder bermassa m yang semula berada dipermukaan air sampai tercelup sempurna. Diharapkan hasil dari uji coba tersebut adalah 1) grafik yang menjelaskan bahwa berat gelas ukur bertambah seiring dengan berkurangnya berat dari silinder bermassa m, 2) grafik yang menunjukkan jumlah dari kedalaman silinder tercelup sama dengan gaya apung ditambah dengan berat silinder yang terdeteksi, dan 3) grafik gaya apung sama dengan berat silinder m tercelup.
Kata-kata kunci: Alat Peraga, Gaya Apung, Arduino
Abstract
This paper discusses Arduino-based physics learning with buoyancy force. The development steps taken include: 1) designing hardware, 2) designing software, and 3) testing props. The props will be validated by physicists and physics learning media experts. The hardware design consists of a Laptop/PC, Arduino nano, Micro USB Cable, Load Cell Sensor, Load Cell Amplifier, Power Supply, measuring cup, fluid (liquid), static pole, cylinder of mass m, and a table that can be changed in height. The software design uses the C++ programming language, with windows operating system, Arduino IDE 1.8.12, USB Driver, and Microsoft Excel. The tool will be tested by hanging a cylinder of mass m and a measuring cup that has been filled with liquid that has previously been assembled and connected to the load cell sensor. The height of the measuring cup will be changed so that the cylinder of mass m, which was initially on the surface of the water, is completely submerged. It is hoped that the results of these experiments are 1) a graph that explains that the weight of the measuring cup increases as the weight of the cylinder of mass m decreases, 2) a graph that shows the sum of the depths of the submerged cylinder equal to the buoyant force plus the detected cylinder weight, and 3) the graph of the buoyant force equals the weight of the submerged cylinder m.
Keywords: props, buoyancy force, Arduino
References
[2] J. A. Moreira, A. Almeida, P. S. Carvalho, “Two experimental approaches of looking at buoyancy”, The Physics Teacher, vol. 51, no. 2, pp. 96-97, 2013.
[3] C. Kustandi, D. Darmawan, “Pengembangan Media Pembelajaran: Konsep & Aplikasi Pengembangan Media Pembelajaran bagi Pendidik di Sekolah dan Masyrakat,” Jakarta: Prenada Media, 2020.
[4] H. Permana, F. Bakri, I. H. Salsabila, D. Ambarwulan, D. Muliyati, D. Sumardani, “The Development of Augmented Reality Application to Explore Fluid Concepts,” Jurnal Penelitian & Pengembangan Pendidikan Fisika, vol. 7, no. 1, pp. 53-60, Jul. 2021.
[5] D. Muliyati, N. Nurhayati, J. Sabaryati, S. Viridi, “The granular buoyant force in a two-dimensional intruder-particles bed system,” AIP Conference Proceedings, vol. 2169, no. 1, pp. 3-8. 2019.
[6] J. Radovanovic, J. Slisko, “Approximate Value of Buoyant Force: A Water-Filled Balloon Demonstration,” The Physics Teacher, vol. 50, no. 7, pp. 428-429, 2012.
[7] C. R. Cena, O. C. N. Pereira, V. M. Pereira, T. A. Canassa, R. C. Viscovini, “Uma abordagem teórica e experimental do oscilador harmônico em duas dimensões utilizando as curvas de Lissajous,” Revista Brasileira de Ensino de Fisica, vol. 36, no. 2, 2014.
[8] W. Indrasari, A. S. Budi, D. P. Fadilla, “The Development of Educational Aids for Restitution Coefficient Experiment Using Microcontroller,” Jurnal Penelitian & Pengembangan Pendidikan Fisika, vol. 8, no. 1, pp. 95-104, Jun. 2022.
[9] D. Muliyati, R. Milenia, R. Fahdiran, “Elektrotektif’: An Educational Game to Explore Electricity Concept Using Case-Based Learning,” Jurnal Penelitian & Pengembangan Pendidikan Fisika, vol. 8, no. 2, pp. 283-292, Dec. 2022.
[10] F. C. Wibowo, D. Anggraini, M. Delina, “Virtual Microscopic Simulation (VMS) of Light-Wave to Enhance the Student’s Understanding Level,” Jurnal Penelitian & Pengembangan Pendidikan Fisika, vol. 8, no. 2, pp. 271-282, Dec. 2022.
[11] F. Bakri, B. Z. Siahaan, A. H. Permana, “Rancangan Website Pembelajaran Terintegrasi dengan Modul Digital Fisika Menggunakan 3D PageFlip Professional,” Jurnal Penelitian & Pengembangan Pendidikan Fisika, vol. 2, no. 2, pp. 113-118, Dec. 2016.