SINTESIS DAN ANALISIS STRUKTUR KRISTAL NANOPARTIKEL ZNO MENGGUNAKAN METODE PRESIPITASI DENGAN PH-7
DOI:
https://doi.org/10.21009/03.1201.FA25Abstract
Abstrak
Nanopartikel Zink Oxide (ZnO) telah disintesis menggunakan teknik presipitasi dengan pH-7 dan dilanjutkan memberi perlakuan annealing pada suhu 400°C selama 4 jam. Berdasarkan Inorganic Crystal Structure Database (ICSD) nomor #98-018-0052, hasil pola difraksi yang diukur menggunakan teknik difraksi sinar-x mengkonfirmasi bahwa sampel yang terbentuk merupakan nanopartikel ZnO dengan struktur polikristal hexagonal wurtzite. Perhitungan lebih lanjut dari hasil perhitungan dan analisis pola difraksi diperoleh informasi bahwa parameter kisi a = 3.25 Å dan c = 5.21 Å dengan volume unit sel 47.62 Å3. Sedangkan ukuran kristalit pada bidang (100), (002), (101), (102), (110), (103), (200), (112), (201), (004), (202), (104), (203) berturut-turut adalah 38.67 nm, 38.09 nm, 39.13 nm, 35.23 nm, 31.79 nm, 30.55 nm, 29.50 nm, 29.63 nm, 29.97 nm, 28.74 nm, 27.79 nm, 27.24 nm, 25.59 nm. Rata-rata ukuran kristalit dari sampel nanopartikel ZnO ini adalah 31.69 nm.
Kata-kata kunci: ZnO, nanopartikel, presipitasi, polikristalin.
Abstract
ZnO nanoparticles were synthesized using a precipitation technique with a pH of 7 and then annealed at 400°C for 4 hours. Based on the Inorganic Crystal Structure Database (ICSD) number # 98-018-0052, the results of the diffraction pattern measured using the x-ray diffraction technique confirmed that the sample formed was a ZnO nanoparticle with a polycrystalline hexagonal wurtzite structure. Furthermore, the crystal parameter was calculated from the diffraction patterns provided that the lattice parameters a = 3.25 Å and c = 5.21 Å with a unit cell volume of 47.62 Å3. Meanwhile, the crystallites size of (100), (002), (101), (102), (110), (103), (200), (112), (201), (004), (202), ( 104), (203) is 38.67 nm, 38.09 nm, 39.13 nm, 35.23 nm, 31.79 nm, 30.55 nm, 29.50 nm, 29.63 nm, 29.97 nm, 28.74 nm, 27.79 nm, 27.24 nm, 25.59 nm, respectively. It means the average crystallite size of the ZnO nanoparticle is 31.69 nm.
Keywords: ZnO, nanoparticles, precipitation, polycrystal.
References
[2] R. Nagarajan, T. A. Hatton, “Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization,” American Chemical Society, 2018.
[3] T. Tsuzuki, “Commercial scale production of inorganic nanoparticles,” International Journal of Nanotechnology, vol. 6, no. 5, pp. 567-578, 2019.
[4] Titao Li et al., “Rocksalt-Zincblende–Wurtzite Mixed-Phase ZnO Crystals With High Activity as Photocatalysts for Visible-Light-Driven Water Splitting,” Frontier of Chemistry, vol. 8, p. 351, 2020.
[5] A. Kamalianfar, “Synthesis and Characterization og ZnO Flower-Like Multisheets Grown on Metal Buffer Layer,” Electrochem, vol. 8, pp. 7724-7733, 2023.
[6] Hernowo Alfian. Nurhasanah Iis, “Kristalinitas dan ukuran nanopartikel ZnO yang dikalsinasi pada temperatur 100C dan 200C,” Berkala Fisika, vol. 22, no. 4, p. 125, 2019.
[7] A. Al-Hajry et al., “Growth, properties and dye-sensitized solar cells–applications of ZnO nanorods grown by low-temperature solution process,” Superlattices Microstruct, vol. 45, no. 6, pp. 529-534, 2019.
[8] A. Umar et al., “Rapid synthesis and dye-sensitized solar cell applications of hexagonal-shaped ZnO nanorods,” Electrochim Acta, vol. 54, no. 23, pp. 5358-5362, 2019.
[9] A. Umar et al., “Large-scale synthesis of ZnO balls made of fluffy thin nanosheets by simple solution process: Structural, optical and photocatalytic properties,” Journal Colloid Interface Science, vol. 363, no. 2, pp. 521-528, 2021.
[10] J. X. Wang et al., “Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications,” Nanotechnology, vol. 17, no. 19, pp. 4995-4998, 2006.
[11] Z. Luo et al., “Selectively Enhanced Antibacterial Effects and Ultraviolet Activation of Antibiotics with ZnO Nanorods Against Escherichia Coli,” Journal Biomed Nanotechnol, vol. 9, no. 1, pp. 69-76, 2023.
[12] R. Wahab et al., “ZnO Nanoparticles Induce Oxidative Stress in Cloudman S91 Melanoma Cancer Cells,” Journal Biomed Nanotechnol, vol. 9, no. 3, pp. 441-449, 2015.
[13] S. iwan et al., “Enhancement of UV photoluminescence in ZnO tubes grown by metal organic chemical vapour deposition (MOCVD),” Vacuum, vol. 115, pp. 408-411, 2018.
[14] S. Iwan et al., “Green electroluminescence from an n-ZnO: Er/p-Si heterostructured light-emitting diode,” Physica B: Condensed Matter, vol. 407, pp. 2721-2724, 2022.
[15] S. Iwan et al., “Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction,” AIP Conf Proceeding, vol. 1729, no. 1, 2016.
[16] A. Ahmed, Al-Ghamdi et al., “Semiconducting properties of Al doped ZnO thin films,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 131, pp. 512-517, 2014.
[17] Wei Lan et al., “Structural and optical properties of La-doped ZnO films prepared by magnetron sputtering,” Mater Lett, vol. 61, no. 11-12, pp. 2262-2265, 2007.
[18] Nur Ajrina Putri et al., “Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates,” Applied Surface Science, vol. 439, pp. 285-297, 2018.
[19] Hyunghoon Kim, Jin Young Moon, Ho Seong Lee, “Growth of ZnO nanorods on various substrates by electrodeposition,” Electronic Materials Letters, vol. 5, pp. 135-138, 2009.
[20] S. Iwan et al., “Morphology and optical properties of Cu–Al co-doped ZnO nanostructures,” Surfaces and Interfaces, vol. 16, pp. 147-151, 2019.
[21] Qui Thanh Hoai Ta, Gitae Namgung, Jin-Seo Noh, “Morphological evolution of solution-grown cobalt-doped ZnO nanostructures and their properties,” Chem Phys Lett, vol. 700, pp. 1-6, 2018.
[22] S. S. Alias, A. B. Ismail, A. A. Mohamad, “Effect of pH on ZnO nanoparticle properties synthesized by sol-gel centrifugation,” Journal Alloys Compd, vol. 499, no. 2, pp. 231-237, 2010.
[23] Ruoyu Hong et al., “Synthesis and surface modification of ZnO nanoparticles,” Chemical Engineering Journal, vol. 119, no. 2-3, pp. 71-81, 2006.
[24] P. P. Mahamuni et al., “Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution,” Biochem Biophys Rep, vol. 17, pp. 71-80, 2019.
[25] Idalia Bilecka, Pierre Elser, Markus Niederberger, “Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol,” American Chemical Society, vol. 3, no. 2, pp. 467-477, 2009.
[26] Xilun Hu et al., “Influences of target and liquid media on morphologies and optical properties of ZnO nanoparticles prepared by laser ablation in solution,” Journal of the American Ceramic Society, vol. 94, no. 12, pp. 4305-4309, 2011.
[27] Meng-ke Li et al., “Synthesis and properties of aligned ZnO microtube arrays,” Appl Surf Sci, vol. 253, no. 9, pp. 4161-4165, 2007.
[28] Chu-Chi Ting et al., “Compact and vertically-aligned ZnO nanorod thin films by the low-temperature solution method,” Thin Solid Films, vol. 518, no. 15, pp. 4156-4162, 2010.
[29] Yi-Mu Lee, Hsi-Wen Yang, “Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells,” Journal Solid State Chem, vol. 184, no. 3, pp. 615-623, 2011.
[30] V. Manoj et al., “Synthesis of ZnO Nanoparticles using Carboxymethyl Cellulose Hydrogel,” Asian Journal of Applied Sciences, vol. 7, no. 8, pp. 798-803, 2014.
[31] Javed Iqbal et al., “Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties,” AIP Advances, vol. 5, no. 12, 2015.