ANALISIS STRUKTUR KRISTAL DAN ABSORBANSI LAPISAN TIPIS ZNO BERSTRUKTUR NANO DI ATAS SUBSTRAT KACA BERPELAPIS INDIUM TIN OXIDE
DOI:
https://doi.org/10.21009/03.1201.FA26Abstract
Abstrak
Pada penelitian ini telah dilakukan deposisi lapisan tipis ZnO berstruktur nano dengan menggunakan teknik Ultrasonic Spray Pyrolysis (USP) di atas substrat kaca Indium Tin Oxide (ITO) selama 15 menit pada suhu 450℃. Zinc Acetate Dyhydrate [Zn(CH3COO)2] digunakan sebagai prekursor Zn dengan variasi konsentrasi prekursor 0.1M dan 0.4M. Lapisan tipis ZnO telah dikarakterisasi menggunakan X-Ray Diffractometer (XRD), Uv-Vis Spectrofotometer, dan Scanning Electron Microscope (SEM) untuk menganalisis struktur kristal, absorbansi, dan struktur morfologi. Berdasarkan Inorganic Crystal Structure Database (ICSD) nomor #98-003-1060 dan #98-005-7478, pola X-Ray Diffraction (XRD) dari lapisan tipis ZnO memiliki struktur polikristal hexagonal wurtzite dengan space group P63mc. Uji Uv-Vis untuk sampel dengan konsentrasi 0.4M menunjukkan adanya peningkatan intensitas absorbansi paling dominan pada ~320 nm. Sehingga dapat diprediksikan sampel memiliki besar celah energi sebesar 3.2 eV.
Kata-kata kunci: lapisan tipis ZnO, ultrasonic spray pyrolysis, struktur kristal, absorbansi, celah energi.
Abstract
In this study, we have deposited nanostructured ZnO thin films using the Ultrasonic Spray Pyrolysis (USP) method on an Indium Tin Oxide (ITO) glass substrate for 15 minutes at 450℃. Zinc Acetate Dyhydrate [Zn(CH3COO)2] was used as a Zn precursor with various precursor concentrations of 0.1M and 0.4M. The ZnO thin film has been characterized using an X-Ray Diffractometer (XRD), Uv-Vis Spectrophotometer, and Scanning Electron Microscope (SEM) to obtain a crystal structure, absorbance, and morphology structure. Based on the Inorganic Crystal Structure Database (ICSD) number #98-003-1060 and #98-005-7478, the X-Ray Diffraction (XRD) pattern of ZnO thin film has a polycrystalline hexagonal wurtzite structure with space group P63mc. Uv-Vis characterization for samples with a concentration of 0.4M showed that there was an increase in absorbance intensity that was most dominant at ~320 nm. Hence, it can be predicted that the sample has an energy gap of 3.2 eV.
Keywords: ZnO thin film, ultrasonic spray pyrolysis, crystal structure, absorbance, bandgap.
References
[2] A. A. Ghassan, Mijan, “Nanomaterials: An Overview of Nanorods Synthesis and Optimization,” Intech Open. pp. 1-24, 2015.
[3] I. Y. Bu, M. T. Cole, “One-pot synthesis of intercalating ZnO nanoparticles for enhanced dye-sensitized solar cells,” Materials Letters, vol. 90, pp. 56-59, 2013.
[4] I. Y. Bu, C. C. Yang, “High-performance ZnO nanoflake moisture sensor,” Superlattices Microstruct, vol. 51, pp. 745-753, 2012.
[5] Y. Zhu et al., “Enhanced piezo-humidity sensing of Sb-doped ZnO nanowire arrays as self-powered/active humidity sensor,” Mater Lett, vol. 154, pp. 77-80, 2015.
[6] I. Y. Bu, “Self-assembled, wrinkled zinc oxide for enhanced solar cell performances,” Mater Lett, vol. 122, pp. 55-57, 2014.
[7] Prasetiyo, K. Wiji, “Aplikasi Nanoteknologii dalam Industri Hasil Hutan,” Jurnal Akar, vol. 2, no. 1, pp. 15-26, 2020.
[8] I. Sugihartono et al., “The effect of Al Element on Electrochemical Impedance of ZnO Thin Films,” 4th International Conference on Applied Physics and Matterial Application, vol. 1428, no. 1, pp. 1-5, 2020.
[9] M, Torabi, “We are Intech Open, the world’s leading publisher of Open Access books Built by scientists, for scientists TOP 1%”, Intech, vol. 1, no. 1, pp. 13, 2016.
[10] M. Salah et al., “Rietveld refnement of X ray difraction, impedance spectroscopy and dielectric relaxation of Li doped ZnO sprayed thin flms,” Applied Physics A Materials Science and Processing, vol. 125, pp. 1-21, 2019.
[11] I. Benaicha et al., “Effect of Ni doping on optical structural and morphological properties of ZnO thin films synthesis by MSILAR: Experimental and DFT study,” Journal of Materials, vol. 15, pp. 2-7, 2021.
[12] A. Doyan, Humaini, “Sifat Optik Lapisan Tipis ZnO,” Jurnal Pendidikan Fisika dan Teknologi, vol. 3, no. 1, pp. 34-39, 2017.
[13] H. Susanto et al., “Deposisi Lapisan Tipis Fotokatalis Seng Oksida (ZnO) Berukuran Nano dengan Teknik Penyemprotan dan Aplikasinya Untuk Pendegradasi Pewarna Methylene Blue,” Jurnal Fisika, vol. 3, no. 1, pp. 69-75, 2013.
[14] M. Munoz et al., “Shape-control of Zinc Oxide Nanoparticles: Enchancing Photocatalytic Activity Under UV Irradiation,” Journal of Physics Conference Series, vol. 792, no. 1, pp. 1-5, 2017.
[15] L. B. Freund, S. Suresh, “Thin Film Materials Stress, Defect Formation and Surface Evolution,” Cambridge University Press, 2003.
[16] W. Darenfad, N. Guermat, K. Mirouh, “Thoughtful Investigation of ZnO Doped Mg and Co-doped Mg/Mn, Mg/Mn/F Thin Films: A First Study,” Journal of Molecular Structure, vol. 1286, pp. 1-7, 2021.
[17] T. Prabhakar, J. Nagaraju, “Ultrasonic Spray Pyrolysis of CZTS Solar Cell Absorber Layers and Characterization Studies,” 35th IEEE Photovoltaics Specialists Conference (PVSC 35), pp. 20-25, 2010.
[18] I. Sugihartono et al., “Influence of Co Incorporation on Morphological, Structural, and Optical Properties of ZnO Nanorods Synthesized by Chemical Bath Deposition,” Materials Research, vol. 26, pp. 1-15, 2023.
[19] M. N. H. Mia, M. F. Perez, M. K. Hossain, “Influence of Mg content on tailoring optical bandgap of Mg-doped ZnO thin film prepared by sol-gel method,” Results in Physics, vol. 7, pp. 2683-2691, 2017.
[20] Y. Caglar et al., “Influence of heat treatment on the nanocrystalline structure of ZnO film deposited on p-Si,” Journal of alloys and compound, vol. 481, pp. 885-889, 2009.
[21] I. Sugihartono et al., “The Effect of Al-Cu Co-Dopants in Morphology, Structure, and Optical Properties of ZnO Nanostructures,” Materials Research, vol. 26, pp. 1-6, 2023.
[22] M. Shkir, M. Arif, V. Ganesh, “Investigation on structural, linear, nonlinear and optical limiting properties of sol-gel derived nanocrystalline Mg doped ZnO thin films for optoelectronic applications,” Journal of Molecular Structure, vol. 1173, pp. 375-384, 2018.
[23] M. Chakraborty, P. Mahapatra, R. Thangavel, “Structural, optical and electrochemical properties of Al and Cu co-doped ZnO nanorods synthesized by a hydrothermal method,” Thin Solid Films, vol. 612, pp. 49-54, 2016.
[24] M. I. A. Umar et al., “Synthesis of standing ZnO nanosheets and impact of Ag nanoparticles loading on its optical property,” Bull Matter Sci, vol. 45, no. 4, pp. 3-8, 2022.
[25] N. Ghazari et al., “Synthesis, experimental and theoretical investigations of Zn 1-xCu xO nanopowders,” Journal of Magnetism and Magnetic Materials, vol. 325, pp. 42-46, 2013.
[26] P. Winget et al., “Defect-driven interfacial electronic structures at an organic/metal-oxide semiconductor heterojunction,” Advanced Materials, vol. 26, no. 27, pp. 4711-4716, 2014.