STUDI AWAL BIOSINTESIS NANOPARTIKEL ZNO MENGGUNAKAN EKSTRAK DAUN MORINGA OLEIFERA DENGAN TEKNIK PRESIPITASI
DOI:
https://doi.org/10.21009/03.1201.FA27Abstract
Abstrak
Biosintesis nanopartikel ZnO telah dilakukan menggunakan teknik presipitasi dengan melarutkan 2 gram seng nitrat tetrahidrat [Zn(NO3)2.4H2O] ke dalam 20 ml ekstrak daun kelor (Moringa oleifera) pada pH 9 dan suhu 60ºC selama 20 menit. Serbuk nanopartikel ZnO diperoleh setelah endapan dikalsinasi pada suhu 400ºC selama 2 jam. Pola difraksi dari hasil karakterisasi menggunakan teknik difraksi sinar-x dan pencocokan dengan standar Inorganic Crystal Structure Database (ICSD) nomor #98-018-0050 mengkonfirmasi bahwa struktur kristal dari nanopartikel ZnO adalah polikristal heksagonal wurtzite dengan space group P63mc. Selanjutnya, hasil analisis pola difraksi memberikan parameter struktur kristal berupa parameter kisi a = 3.253 Å, c = 5.210 Å, serta rata-rata Full Width at Half Maximum (FWHM) sebesar 0.6494°. Mengacu pada nilai FWHM, ukuran kristalit pada bidang (100), (002), (101), (102), (110), (103), (112), (201), dan (202) berturut-turut adalah 41.32, 41.6, 49.47, 16.34, 13.88, 8.98, 8.72, 11.7, dan 10.71 nm yang menghasilkan rata-rata ukuran kristalit sebesar 22.524 nm.
Kata-kata kunci: biosintesis, nanopartikel ZnO, moringa oleifera, struktur kristal, ukuran kristalit.
Abstract
Biosynthesis of ZnO nanoparticles was carried out using the precipitation technique by dissolving 2 gram of Zinc Nitrate Tetrahydrate [Zn(NO3)2.4H2O] in 20 ml of Moringa oleifera leaf extract at pH 9 and temperature 60°C for 20 minutes. ZnO nanoparticles powder was obtained after the precipitate was calcined at 400°C for 2 hours. The diffraction pattern from the results of the characterization using the X-Ray Diffraction (XRD) technique and matching with the Inorganic Crystal Structure Database (ICSD) standard number #98-018-0050 confirmed that the crystal structure of the ZnO nanoparticles is hexagonal wurtzite polycrystalline with a P63mc space group. Furthermore, the results of the diffraction pattern analysis provide crystal structure parameters in the form of lattice parameters a = 3.253 Å, c = 5.210 Å, and average Full Width at Half Maximum (FWHM) of 0.6494°. According to the FWHM value, the crystallite sizes in fields (100), (002), (101), (102), (110), (103), (112), (201), and (202) respectively are 41.32, 41.6, 49.47, 16.34, 13.88, 8.98, 8.72, 11.7, and 10.71 nm which resulted in an average crystallite size of 22.524 nm.
Keywords: biosynthesis, ZnO nanoparticles, moringa oleifera, crystal structure, crystallite sizes.
References
[2] J. V. González-Fernández et al., “Green Method, Optical and Structural Characterization of ZnO Nanoparticles Synthesized Using Leaves Extract of M. oleifera,” Journal of Renewable Materials, vol. 10, no. 3, pp. 1-16, 2022.
[3] B. Gherbi et al., “Effect of pH Value on the Bandgap Energy and Particles Size for Biosynthesis of ZnO Nanoparticles: Efficiency for Photocatalytic Adsorption of Methyl Orange,” Sustainability, vol. 14, no. 18, pp. 1-14, 2022.
[4] S. T. Karam, A. F. Abdulrahman, “Green Synthesis and Characterization of ZnO Nanoparticles by Using Thyme Plant Leaf Extract,” Photonics, pp. vol. 9, no. 8, pp. 1-20, 2022.
[5] H. Sutanto, W. Singgih, “Semikonduktor Fotokatalis Seng Oksida dan Titania (Sintesis, Deposisi dan Aplikasi),” Semarang: Penerbit Telescope, 2015.
[6] I. Ngom et al., “On the Use of Moringa Oleifera Leaves Extract for the Biosynthesis of NiO and ZnO Nanoparticles,” Materials Research Society, pp. 1-11, 2020.
[7] M. A. Fagier, “Plant-Mediated Biosynthesis and Photocatalysis Activities of Zinc Oxide Nanoparticles: A Prospect towards Dyes Mineralization,” Journal of Nanotechnology, pp. 1-15, 2021.
[8] Z. S. Keskin, Ü. Açıke, “Biosynthesis, Characterization and Antioxidant Properties of ZnO Nanoparticles Using Punica Granatum Peel Extract as Reducing Agent,” Cumhuriyet Science Journal, vol. 44, no. 1, pp. 90-98, 2023.
[9] V. P. Lestari, Abrar, I. W. Fathona, “Sintesis Nanostruktur Zno Dengan Metode Hidrotermal Untuk Aplikasi Sensor Gas Butana,” e-Proceeding of Engineering, vol. 6, no. 2, p. 5375, 2019.
[10] S. Wirunchit, P. Gansa, W. Koetniyom, “Synthesis of ZnO nanoparticles by Ball-milling process for biological applications,” Materials Today: Proceedings, 2021.
[11] Y. Wang et al., “Solvothermal Synthesis of ZnO Nanoparticles for Photocatalytic Degradation of Methyl Orange and p-Nitrophenol,” Water, vol. 13, n0. 22, p. 3224, 2021.
[12] G. Singh, S. P. Singh, “Synthesis of zinc oxide by sol-gel method and to study it’s structural properties,” AIP Conference Proceedings, 2020.
[13] Y. Wu et al., “Electrochemical Synthesis of ZnO Nanoparticles and preparation of Pea Starch/ZnO composite for Active Food Packaging Application,” International Journal of Electrochemical Science, vol. 14, pp. 10745-10753, 2019.
[14] M. T. Noman et al., “One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization,” Materials, vol. 13, 2020.
[15] Y. Y. Chan et al., “Facile green synthesis of ZnO nanoparticles using natural-based materials: Properties, mechanism, surface modification and application,” Journal of Environmental Chemical Engineering, pp. 1-22, 2021.
[16] R. Verma et al., “ZnO nanomaterials: Green synthesis, toxicity evaluation and new insights in biomedical applications,” Journal of Alloys and Compounds, pp. 1-20, 2021.
[17] K. Elumalai et al., “Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 143, pp. 158-164, 2015.
[18] R. Nurbayasari, E. Chasanah, Nurhayati, “Nanopartikel Seng Oksida (ZnO) dari Biosintesis Ekstrak Rumput Laut Coklat Sargassum sp. dan Padina sp,” Jurnal Perikanan, Universitas Gadjah Mada, vol. 19, no. 1, pp. 17-28, 2017.
[19] M. Naseer et al., “Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential,” Scientific Reports, vol. 10, no. 1, p. 9055, 2020.
[20] Y. Nurlina, I. Syahbanu, “Sintesis Nanopartikel Zink Oksida (ZnO) dengan Penambahan Ekstrak Klorofil dari Daun Suji sebagai sumber Capping Agent,” POSITRON, pp. 123-130, 2020.
[21] I. Ngom et al., “Biosynthesis of zinc oxide nanoparticles using extracts of Moringa Oleifera: Structural & optical properties,” Materials Today: Proceedings, vol. 36, no. 2, pp. 526-533, 2021.
[22] D. Anggraheni, Isnaeni, I. Sugihartono, “Pengaruh Variasi PH terhadap Sifat Optik ZNO Nanopartikel dari hasil Biosintesis,” Prosiding Seminar Nasional Fisika [E-Journal] SNF2020, vol. 9, pp. 1-4, 2020.
[23] V. Koutu, L. Shastri, M. M. Malik, “Effect of NaOH concentration on optical properties of zinc oxide nanoparticles,” Materials Science-Poland, vol. 34, no. 4, pp. 819-827, 2016.
[24] I. Sugihartono et al., “The Effect of Al-Cu Co-Dopant on Morphological, Structure, and Optical Properties of ZnO Nanostructures,” Materials Research, vol. 26, p. e20220499, 2023.
[25] J. Iqbal et al., “Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties,” AIP ADVANCES, vol. 5, no. 12, 2015.
[26] Q. M. Bataineh et al., “Synthesis, Crystallography, Microstructure,Crystal Defects, Optical and Optoelectronic Properties of ZnO:CeO2 Mixed Oxide Thin Films,” Photonics, vol. 7, no. 4, p. 112, 2020.