SINTESIS DAN ANALISIS STRUKTUR KRISTAL NANOPARTIKEL ZNO MENGGUNAKAN METODE PRESIPITASI PH-12
DOI:
https://doi.org/10.21009/03.1201.FA28Abstract
Abstrak
Nanopartikel ZnO telah disintesis melalui metode presipitasi dengan pH-12 dan larutan prekursor dipanaskan pada suhu 60℃ selama proses pengadukan. Selanjutnya sampel yang diperoleh, diberi perlakuan annealing selama 4 jam dengan suhu 400℃. Karakterisasi menggunakan teknik Difraksi Sinar-X (XRD) pada sampel telah dilakukan untuk mengetahui fase yang terbentuk dan struktur kristal. Berdasarkan Inorganic Crystal Structure Database (ICSD) nomor 98-018-0050, pola Difraksi Sinar-X (XRD) dari nanopartikel ZnO memiliki struktur wurtzit heksagonal polikristalin dengan space group P63mc. Ukuran kristalit pada bidang (100), (002), (101), (102), (110), (103), (200), (112), (201) berturut-turut adalah 33.04 nm, 32.73 nm, 34.41 nm, 30.46 nm, 26.89 nm, 26.06 nm, 25.01 nm, 25.46 nm, 25.70 nm. Rata-rata ukuran kristalit dari sampel nanopartikel ZnO ini adalah 28.86 nm. Sementara itu, parameter kisi a = b = 3.25 Å dan c = 5.21 Å dengan volume unit sel sebesar 47.61 Å3.
Kata-kata kunci: nanopartikel ZnO, presipitasi, XRD, pH, ukuran kristalit.
Abstract
ZnO nanoparticles were synthesized by precipitation method with a pH of 12 and the precursor solution was heated at 60℃ during the stirring process. Furthermore, the samples obtained were annealed for 4 hours at 400℃. Characterization using X-Ray Diffraction (XRD) technique on the sample has been carried out to determine the phase formed and the crystal structure. Based on the Inorganic Crystal Structure Database (ICSD) number 98-018-0050, the X-Ray Diffraction (XRD) pattern of ZnO nanoparticles has a polycrystalline hexagonal wurtzite structure with the space group P63mc. The crystallite size in (100), (002), (101), (102), (110), (103), (200), (112), (201) plane are 33.04 nm, 32.73 nm, 34.41 nm, 30.46 nm, 26.89 nm, 26.06 nm, 25.01 nm, 25.46 nm, 25.70 nm, respectively. The average crystallite size of the ZnO nanoparticle samples was 28.86 nm. Meanwhile, lattice parameters a = b = 3.25 Å and c = 5.21 Å with a unit cell volume of 47.61 Å3.
Keywords: ZnO nanoparticles, precipitation, XRD, pH, crystallite size
References
[2] T. Tarhan, B. Tural, S. Tural, “Synthesis and characterization of new branched magnetic nanocomposite for loading and release of topotecan anti-cancer drug,” J. Anal. Sci. Technol., vol. 10, no. 1, 2019, doi: 10.1186/s40543-019-0189-x.
[3] S. B. Somvanshi, P. B. Kharat, K. M. Jadhav, “Surface Functionalized Superparamagnetic Zn-Mg Ferrite Nanoparticles for Magnetic Hyperthermia Application Towards Noninvasive Cancer Treatment,” Macromolecular symposia, vol. 400, no. 1, 2021, doi: 10.1002/masy.202100124.
[4] T. Wang et al., “Stabilization mechanism of fly ash three-phase foam and its sealing capacity on fractured reservoirs,” Fuel, vol. 264, 2020, doi: 10.1016/j.fuel.2019.116832
[5] J. Yang et al., “Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors,” Progress in Quantum Electronics, vol. 83, 2022, doi: 10.1016/j.pquantelec.2022.100397.
[6] N. N. Jandow et al., “Thickness effect of ZnO/PPC gas sensor on the sensing properties of NO 2 gas,” in AIP Conference Proceedings, vol. 2083, no. 1, 2019, doi: 10.1063/1.5094306.
[7] E. Y. Shaba et al., “A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment,” Applied Water Science, vol. 11, no. 2. 2021, doi: 10.1007/s13201-021-01370-z.
[8] S. Aftab et al., “Highly Efficient Visible Light Active Doped ZnO Photocatalysts for the Treatment of Wastewater Contaminated with Dyes and Pathogens of Emerging Concern,” Nanomaterials, vol. 12, no. 3. 2022, doi: 10.3390/nano12030486.
[9] F. H. Abdullah, N. H. H. A. Bakar, M. A. Bakar, “Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems,” Journal of Hazardous Materials, vol. 424, 2022, doi: 10.1016/j.jhazmat.2021.127416.
[10] A. Wibowo et al., “ZnO nanostructured materials for emerging solar cell applications,” RSC Advances, vol. 10, no. 70. 2020, doi: 10.1039/d0ra07689a.
[11] U. Godavarti et al., “Precipitated cobalt doped ZnO nanoparticles with enhanced low temperature xylene sensing properties,” Phys. B Condens. Matter, vol. 553, 2019, doi: 10.1016/j.physb.2018.10.034.
[12] S. Vyas, “A short review on properties and applications of zinc oxide based thin films and devices: ZnO as a promising material for applications in electronics, optoelectronics, biomedical and sensors,” Johnson Matthey Technology Review, vol. 64, no. 2. 2020, doi: 10.1595/205651320X15694993568524.
[13] I. Sugihartono et al., “Ion-dependent electroluminescence from trivalent rare-earth doped n-ZnO/p-Si heterostructured light-emitting diodes,” Materials Science in Semiconductor Processing, vol. 30, pp. 263-266, 2015, doi: 10.1016/j.mssp.2014.09.048.
[14] V. S. Bhati, M. Hojamberdiev, M. Kumar, “Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review,” Energy Reports, vol. 6. 2020, doi: 10.1016/j.egyr.2019.08.070.
[15] D. Y. Özcelik et al., “Mixed oxides NiO/ZnO/Al2O3 synthesized in a single step via ultrasonic spray pyrolysis (USP) method,” Metals (Basel), vol. 12, no. 1, 2022, doi: 10.3390/met12010073.
[16] M. M. ElFaham, A. M. Mostafa, E. A. Mwafy, “The effect of reaction temperature on structural, optical and electrical properties of tunable ZnO nanoparticles synthesized by hydrothermal method,” Journal of Physics and Chemistry of Solids, vol. 154, 2021, doi: 10.1016/j.jpcs.2021.110089.
[17] Y. Liu et al., “Effect of eletrodeposition temperature on the thin films of ZnO nanoparticles used for photocathodic protection of SS304,” J. Electroanal Chemical, vol. 881, 2021, doi: 10.1016/j.jelechem.2020.114945.
[18] I. Sugihartono et al., “Morphology and optical properties of Cu–Al co-doped ZnO nanostructures,” Surfaces and Interfaces, vol. 16, 2019, doi: 10.1016/j.surfin.2019.05.009.
[19] S. Arya et al., “Review-Influence of Processing Parameters to Control Morphology and Optical Properties of Sol-Gel Synthesized ZnO Nanoparticles,” ECS Journal of Solid State Science and Technology, vol. 10, no. 2, p. 023002, 2021, doi: 10.1149/2162-8777/abe095.
[20] N. B. Mahmood et al., “Synthesis and characterization of zinc oxide nanoparticles via oxalate co-precipitation method,” Material Letters:X, vol. 13, 2022, doi: 10.1016/j.mlblux.2022.100126.
[21] I. Mohammadi et al., “Solvothermal synthesis of g-C3N4 and ZnO nanoparticles on TiO2 nanotube as photoanode in DSSC,” Int. J. Hydrogen Energy, vol. 45, no. 38, 2020, doi: 10.1016/j.ijhydene.2020.04.277.
[22] E. I. Naik et al., “Influence of Cu doping on ZnO nanoparticles for improved structural, optical, electrochemical properties and their applications in efficient detection of latent fingerprints,” Chemical Data Collect, vol. 33, 2021, doi: 10.1016/j.cdc.2021.100671.
[23] A. Samanta, M. N. Goswami, P. K. Mahapatra, “Optical properties and enhanced photocatalytic activity of Mg-doped ZnO nanoparticles,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 104, 2018, doi: 10.1016/j.physe.2018.07.042.
[24] R. Priyadarshi, B. Kumar, J. W. Rhim, “Green and facile synthesis of carboxymethylcellulose/ZnO nanocomposite hydrogels crosslinked with Zn2+ ions,” nternational Journal of Biological Macromolecules, vol. 162, 2020, doi: 10.1016/j.ijbiomac.2020.06.155
[25] A. Hernowo et al., “Kristalinitas Dan Ukuran Nanopartikel Zno Yang Dikalsinasi Pada Temperatur 100Oc Dan 200Oc,” Berkala Fisika, vol. 22, no. 4, pp. 125-131, 2019
[26] A. Umar et al., “Effect of annealing temperature on the properties and photocatalytic efficiencies of ZnO nanoparticles,” Journal of Alloys and Compounds, vol. 648, pp. 46-52, 2015, doi: 10.1016/j.jallcom.2015.04.236
[27] T. U. Doan et al., “Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities,” RSC Advance, vol. 10, no. 40, 2020, doi: 10.1039/d0ra04926c.
[28] M. C. Uribe-López et al., “Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties,” Journal Photochem Photobiol. A Chemicals, vol. 404, p. 112866, 2021, doi: 10.1016/j.jphotochem.2020.112866.
[29] S. Nagarajan, K. Arumugam Kuppusamy, “Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India,” Journal Nanobiotechnology, vol. 11, no. 1, 2013, doi: 10.1186/1477-3155-11-39.
[30] S. Mustapha et al., “Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles,” Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 10, no. 4, 2019, doi: 10.1088/2043-6254/ab52f7.
[31] I. Sugihartono et al., “The Effect of Al-Cu co-dopants on Morphology, Structure, and Optical Properties of ZnO Nanostructures,” Materials Research, vol. 26, 2023.
[32] I. Sugihartono et al., “Morphological, structural, and optical properties of co-doped ZnO NPs prepared by precipitation method,” Journal of Ceramic Processing Research, vol. 20, no. 5, pp. 518-521, 2019, doi: 10.36410/jcpr.2019.20.5.518.
[33] A. Samanta, M. N. Goswami, P. K. Mahapatra, “Fe-doped ZnO nanoparticles as novel photonic and multiferroic semiconductor,” Mater. Chemicals Physics, vol. 240, 2020, doi: 10.1016/j.matchemphys.2019.122180
[34] J. Iqbal et al., “Facile synthesis of Zn doped CuO hierarchical nanostructures: Structural, optical and antibacterial properties,” AIP Advance, vol. 5, no. 12, 2015, doi: 10.1063/1.4937907.
[35] Q. M. Al-Bataineh et al., “Synthesis, crystallography, microstructure, crystal defects, optical and optoelectronic properties of ZnO:CeO2 mixed oxide thin films,” Photonics, vol. 7, no. 4, 2020, doi: 10.3390/photonics7040112.