KARAKTERISASI MORFOLOGI DAN KOMPOSISI LAPISAN KOMPOSIT NI-TIN-ALN/SI3N4 DENGAN METODE ELEKTRODEPOSISI RAPAT ARUS PULSA
DOI:
https://doi.org/10.21009/03.1201.FA29Abstract
Abstrak
Pelapisan logam banyak dilakukan oleh industrialis untuk menyesuaikan morfologi permukaan, kinerja keausan, daya rekat dan kekuatan bahan substrat tanpa mengubah sifat asli substrat. Pembentukan lapisan komposit Ni-TiN-AlN/Si3N4 pada Tungsten Karbida (WC) telah dilakukan untuk menganalisis pengaruh rapat arus pulsa sebesar 0,4 mA/mm2 terhadap morfologi, komposisi, dan tebal lapisan komposit Ni-TiN-AlN/Si3N4. Pelapisan menggunakan metode elektrodeposisi pada suhu 40ºC dengan laju pengadukan 600 rpm selama 30 menit. Komposisi yang digunakan adalah NiCl2.6H2O 0,17 M, Ni2SO4.6H2O 0,38 M, TiN 6 g/L, AlN 6 g/L, Si3N4 0,6 g/L, H3BO3 0,49 M dan SDS (Sodium Dodecyl Sulfate) 0,6 g/L. Hasil penelitian menunjukkan adanya kandungan unsur logam Ni, Ti, Al, serta Si dengan tebal lapisan komposit yang terbentuk yaitu 1,121 μm. Pemindaian morfologi menunjukkan permukaan yang kasar serta terjadinya aglomerasi pada permukaan substrat.
Kata-kata kunci: lapisan komposit Ni-TiN-AlN/Si3N4, elektrodeposisi, rapat arus pulsa, morfologi permukaan.
Abstract
Metal coatings are widely used by industrialists to adjust the surface morphology, wear performance, adhesion and strength of the substrate material without changing the original properties of the substrate. The formation of the Ni-TiN-AlN/Si3N4 composite layer on Tungsten Carbide (WC) was carried out to analyze the effect of the pulse current density of 0,4 mA/mm2 on the morphology, composition, and thickness of the Ni-TiN-AlN/Si3N4 composite layer. The coating was deposited using the electrodeposition technique at 40ºC with a stirring rate of 600 rpm for 30 minutes. The compositions used NiCl2.6H2O 0,17 M, Ni2SO4.6H2O 0,38 M, TiN 6 g/L, AlN 6 g/L, Si3N4 0,6 g/L, H3BO3 0,49 M and SDS (Sodium Dodecyl Sulfat) 0,6 g/L. The results showed the presence of metal elements Ni, Ti, Al, and Si with the thickness of the composite layer formed was 1.121 μm. Morphological scanning showed a rough surface as well as agglomeration on the surface of the substrate.
Keywords: Ni-TiN-AlN/Si3N4 composite layer, electrodeposition, pulse current density, surface morphology.
References
[2] B. Vanrenterghem et al., “Cutting the Gordian Knot of Electrodeposition via Controlled Cathodic Corrosion Enabling the Production of Supported Metal Nanoparticles below 5 nm,” vol. 226, pp. 396-402, 2018, doi: https://doi.org/10.1016/j.apcatb.2017.12.080.
[3] V. Torabinejad et al., “Electrodeposition of Ni-Fe Alloys, Composites, and Nano Coatings–a Review,” Journal of Alloys and Compounds, vol. 691, pp. 841-859, 2017, doi: https://doi.org/10.1016/j.jallcom.2016.08.329.
[4] Ghosh, Swatilekha, “Electroless Copper Deposition: A Critical Review,” Thin Solid Films, vol. 669, pp. 641-658, 2019, doi: https://doi.org/10.1016/j.tsf.2018.11.016.
[5] A. M. A. Mohamed, T. G. Golden, “Electrodeposition of Composite Materials,” BoD- Books on Demand, 2016, [Online]. Available: https://books.google.com/books?hl=id&lr=&id=QmQDwAAQBAJ&oi=fnd&pg=PA187&dq=Cooke
[6] F. Xia et al., “Effect of Pulse Current Density on Microstructure and Wear Property of Ni-TiN Nanocoatings Deposited via Pulse Electrodeposition,” Applied Surface Science, vol. 538, p. 148139, 2021, doi: https://doi.org/10.1016/j.apsusc.2020.148139.
[7] H. Goyal, “Understanding of IC555 Timer and IC 555 Timer Tester,” International Journal of Inventive Engineering and Sciences (IJIES), vol. 3, no. 2, pp. 4-6, 2015, Available: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b438103b61b34005d357a6783933fe48eb4af64b.
[8] N. F. Kasri, M. A. M. Piah, “A Compact and Reliable Pulse Generator using Dual 555-Timer IC to Produce PWM Method,” IEEE Conference on Energy Conversion (CENCON), 2017, doi: https://doi.org/10.1109/cencon.2017.8262466.
[9] M. M. Abrar, “Design and Implementation of Astable Multivibrator using 555 Timer,” IOSR Journal of Electrical and Electronics Engineering, vol. 12, no. 1, pp. 22-29, 2017, doi: https://doi.org/10.9790/1676-1201022229.
[10] R. Arulmurugan, S. B. Pagare, “A Virtual Laboratory for 555 Timer Circuit Investigation Approach,” Journal of Controller and Converters, vol. 5, no. 3, pp. 21-27, 2020, Accessed: Jun. 13, 2023. [Online]. Available: https://www.mendeley.com/catalogue/968e90b1-b242-3a5d-abc3-ef8136fa49c7
[11] P. Sivasakthi, M. V. Sangaranarayanan, “Influence of Pulse and Direct Current on Electrodeposition of Ni Gd2O3 Nanocomposite for Micro Hardness,” Wear Resistance and Corrosion Resistance Applications, vol. 13, pp. 134-142, 2019, doi: https://doi.org/10.1016/j.coco.2019.04.008.
[12] A. W. Andiani, E. Budi, I. Sugihartono, “Pembentukan Lapisan Komposit Ni-TiAlN/Si3N4 menggunakan Metode Elektrodeposisi dengan Variasi Temperatur,” Prosiding Seminar Nasional Fisika (E-JOURNAL), vol. 8, pp. SNF2019-145, 2019, doi: https://doi.org/10.21009/03.SNF2019.02.PA.20.
[13] E. Budi et al., “Preliminary Study on High-Temperature Oxidation of Ni-AlN-TiN/Si3N4 Electrodeposition Composite Coatings,” Journal of Physics: Conference Series, vol. 2019, no. 1, p. 012067, 2021, doi: https://doi.org/10.1088/1742-6596/2019/1/012067.
[14] Nafise Parhizkar et al., “Electrochemical Deposition of Ni–TiN Nanocomposite Coatings and the Effect of Sodium Dodecyl Sulphate Surfactant on the Coating Properties,” vol. 39, no. 4, pp. 1021-1027, 2016, doi: https://doi.org/10.1007/s12034-016-1238-3.
[15] Esmar Budi et al., “Effect of Elevated Temperature on Composition and Morphology of Ni-TiN/Si3N4 Composite Coatings,” AIP Conference Proceedings, vol. 2320, no. 1, 2021, doi: https://doi.org/10.1063/5.0037553.
[16] P. Wang et al., “Novel Nitride Materials Synthesized at High Pressure,” Crystals, vol. 11, no. 6, p. 614, May 2021, doi: https://doi.org/10.3390/cryst11060614.
[17] D. Tonelli, E. Scavetta, I. Gualandi, “Electrochemical Deposition of Nanomaterials for Electrochemical Sensing,” Sensors, vol. 19, no. 5, p. 1186, 2019, doi: https://doi.org/10.3390/s19051186.