FABRIKASI LAPISAN KOMPOSIT NI-TIN PADA TUNGSTEN KARBIDA DENGAN METODE ELEKTRODEPOSISI RAPAT ARUS PULSA
DOI:
https://doi.org/10.21009/03.1201.FA31Abstract
Abstrak
Lapisan Ni-TiN dapat meningkatkan kekerasan, menghalangi difusi ke substrat, dan mencegah oksidasi saat suhu tinggi. Ni dan TiN dipilih karena dapat meningkatkan sifat tangguh dan kekuatan deformasi pada substrat. Tungsten karbida dilapisi untuk menyesuaikan permukaan, keausan, daya rekat, dan kekuatan substrat tanpa mengubah sifat asli. Pembentukan lapisan komposit Ni-TiN dilakukan pada tungsten karbida untuk menganalisis pengaruh rapat arus pulsa 0,4 mA/mm2 terhadap morfologi dan komposisi lapisan komposit Ni-TiN. Elektrodeposisi pulsa menggunakan rangkaian astable multivibrator dengan IC 555 sebagai pulse generator dan melalui osiloskop akan terbaca output berupa gelombang arus kotak dengan panjang gelombang tertentu. Proses elektrodeposisi dilakukan selama 30 menit pada suhu 40ºC dengan laju pengadukan 600 rpm. Pemindaian morfologi menggunakan Scanning Electron Microscope (SEM) dengan skala 20 μm menunjukkan permukaan yang kasar, sebaran atom-atom tidak merata serta adanya retakan pada permukaan substrat. Hasil pemindaian Energy Dispersive X – Ray Spectroscopy (EDS) menunjukkan keberhasilan lapisan yang terbentuk dengan adanya kandungan unsur logam Ni dan TiN.
Kata-kata kunci: Tungsten Karbida, Pelapisan, Elektrodeposisi, SEM.
Abstract
The Ni-TiN coating can increase hardness, inhibit diffusion to the substrate, and prevent oxidation at high temperatures. Ni and TiN were chosen because they can increase the toughness and deformation strength of the substrate. Tungsten carbide is coated to match the surface, wear, adhesion and strength of the substrate without changing the original properties. The formation of the Ni-TiN composite layer was carried out on tungsten carbide to analyze the effect of the pulse current density of 0.4 mA/mm2 on the morphology and composition of the Ni-TiN composite layer. The pulse electrodeposition uses an astable multivibrator circuit with IC 555 as a pulse generator and through an oscilloscope the output will be read in the form of a square current wave with a certain wavelength. The electrodeposition process was performed at 40° C. for 30 minutes with a stirring speed of 600 rpm. Morphological examination using a Scanning Electron Microscope (SEM) with a scale of 20 μm revealed a rough substrate surface with an inhomogeneous distribution of atoms and cracks on the surface. The results of Energy Dispersive X-Ray Spectroscopy (EDS) scans indicated the successful formation of the coating in the presence of the metallic elements Ni and TiN.
Keywords: Tungsten Carbide, Coating, Electrodeposition, SEM.
References
[2] A. Karimzadeh, M. Aliofkhazraei, F. C. Walsh, “A Review of Electrodeposited Ni-Co Alloy and Composite Coatings: Microstructure, Properties and Applications,” Surface and Coatings Technology, vol. 372, pp. 463-498, 2019.
[3] Z. Fu et al., “Effect of Strain Rate on Mechanical Properties of Cu/Ni Multilayered Composites Processed by Electrodeposition,” In Heterostructured Materials Jenny Stanford Publishing, pp. 679-694, 2021.
[4] C. Georgopoulou, “On the modelling of multidisciplinary electrochemical systems with application on the electrochemical conversion of CO2 to formate/formic acid,” Computers and Chemical Engineering, vol. 93, pp. 160-170, 2016.
[5] B. Vanrenterghem, “Cutting the Gordian Knot of Electrodeposition Via Controlled Cathodic Corrosion Enabling the Production of Supported Metal Nanoparticles Below 5 nm,” Applied Catalysis B: Environmental, vol. 226, pp. 396-402, 2018.
[6] V. B. Singh, P. Pandey, “Electrodeposition of Ni Composites and Nanocomposites from Aqueous Organic Solution,” Journal of New Materials for Electrochemical Systems, vol. 8, no. 4, pp. 299-303, 2005.
[7] A. Zoikis-Karathanasis, E. A. Pavlatou, N. Spyrellis, “Pulse Electrodeposition of Ni–P Matrix Composite Coatings Reinforced by SiC Particles,” Journal of Alloys and Compounds, vol. 494, no. 1-2, pp. 396-403, 2010.
[8] S. A. Lajevardi, T. Shahrabi, “Effects of Pulse Electrodeposition Parameters on the Properties of Ni–TiO2 Nanocomposite Coatings,” Applied Surface Science, vol. 256, no. 22, pp. 6775-6781, 2010.
[9] P. Sivasakthi, M. V. Sangaranarayanan, “Influence of Pulse and Direct Current on Electrodeposition of NiGd2O3 Nanocomposite for Micro Hardness,” Wear Resistance and Corrosion Resistance Applications, Composites, 2019.
[10] A. S. Skrypnik, A. A Matvienko, “The Study of Nickel Product Morphology Developed During the Gaseous Reduction of Nickel Oxide,” Materials Today: Proceedings, vol. 4, no. 11, pp. 11425-11429, 2017.
[11] J. G. Portillo, “Synthesis of Nanostructured Nickel Compounds on Conductive Metallic Substrates,” Materials Letters, vol. 257, p. 126676, 2019.
[12] B. Esmar et al., “Komposisi dan Morfologi Permukaan Lapisan Komposit Ni-TiAlN Elektrodeposisi Prosiding Bidang Fisika, pp. 348-353, 2015
[13] M. Ghaemi, L. Binder, “Effects of Direct and Pulse Current on Electrodeposition of Manganese Dioxide,” Journal of Power Sources, vol. 111, no. 2, pp. 248-254, 2002.
[14] D. Melciu, N. Maidee, “Pulse-Electroplating: Process Parameters and Their Influence on the Formed Microstructure,” (Master's thesis), 2015.
[15] Triono, Wahyu, “Generator Ozon sebagai Media untuk Sterilisasi Air,” Tugas Akhir, 2017.
[16] N. Parhizkar et al., “Electrochemical Deposition of Ni-TiN Nanocomposite Coatings and the Effect of Sodium Dodecyl Sulphate Surfactant on the Coating Properties,” Bulletin of Materials Science, vol. 39, no. 4, pp. 1021-1027, 2016.
[17] B. Li et al., “Ultrasonic-Assisted Electrodeposition of Ni-Cu/TiN Composite Coating from Sulphate-Citrate Bath: Structural and electrochemical properties,” Ultrasonics Sonochemistry, vol. 58, p. 104680, 2019.
[18] M. F. Gazulla et al., “Nitrogen Determination by SEM‐EDS and Elemental Analysis,” X‐Ray Spectrometry, vol. 42, no. 5, pp. 394-401, 2013.