PENGARUH PENAMBAHAN JENIS KERAMIK OKSIDA TERHADAP MORFOLOGI DAN KEKERASAN MAGNESIUM AZ31 DENGAN PROSES ELECTROPHORETIC DEPOSITION (EPD)

Authors

  • Syifa Ranggayoni Nurbaiti Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta, Jl. Rawamangun Muka, Jakarta Timur 13220, Indonesia
  • Bunga Rani Elvira Research Center for Metallurgy, National Research and Inovation Agency, Kawasan Sains dan Teknologi – BRIN, KST B.J. Habibie, Gedung Manajemen 72 Jl. Raya puspiptek Serpong Tangerang Selatan 15314, Indonesia
  • Esmar Budi Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta, Jl. Rawamangun Muka, Jakarta Timur 13220, Indonesia
  • Yudi Nugraha Thaha Research Center for Metallurgy, National Research and Inovation Agency, Kawasan Sains dan Teknologi – BRIN, KST B.J. Habibie, Gedung Manajemen 72 Jl. Raya puspiptek Serpong Tangerang Selatan 15314, Indonesia
  • Aprilia Erryani Research Center for Metallurgy, National Research and Inovation Agency, Kawasan Sains dan Teknologi – BRIN, KST B.J. Habibie, Gedung Manajemen 72 Jl. Raya puspiptek Serpong Tangerang Selatan 15314, Indonesia

DOI:

https://doi.org/10.21009/03.1201.FA33

Abstract

Abstrak

Penelitian ini dilakukan dengan menggunakan metode Electrophoretic Deposition (EPD) selama 30 menit dengan suhu ruang pada subtrat Magnesium AZ31 dengan arus 1A dan ektroda yang digunakan yaitu Platina (pt). Variasi kandungan keramik oksida yang digunakan sebagai pelapis yaitu x= (ZrO2); (ZrO2-Na2O7Si3); (ZrO2-Na2O7Si3-Al2O3). Karakterisasi dilakukan menggunakan Scanning Electron Microscopy (SEM) terlihat permukaan Mg AZ31 menunjukkan perubahan morfologi dengan ukuran aglomerat yang semakin besar seiring dengan bertambahnya jenis oksida yang ditambahkan. Uji Electron Dispersive X-Ray Spectroscopy menunjukkan massa Mg yang terdeteksi paling sedikit 66,4246 yaitu pada pelapis ZrO2. Mg AZ31 dengan senyawa ZrO2-Na2O7Si3-Al2O3 memiliki ketebalan yang paling tebal dengan rata rata ketebalan 19,92 . Lalu hasil dari uji kekerasan menunjukkan sampel mengalami kerapuhan seiring dengan bertambahnya jumlah keramik oksida yang ditambahkan.

Kata-kata kunci: Deposisi Elektroforetik, Keramik oksida, Magnesium, Morfologi lapisan, kekerasan.

Abstract

This research was conducted using the Electrophoretic Deposition (EPD) method for 30 minutes at room temperature on a Magnesium AZ31 substrate with a current of 1A and the electrode used was Platinum (pt). Variations in the content of ceramic oxide used as a coating are x= (ZrO2); (ZrO2-Na2O7Si3); (ZrO2-Na2O7Si3-Al2O3). Furthermore, characterization was carried out using Scanning Electron Microscopy (SEM) and it was seen that the surface of Mg AZ31 showed morphological changes with increasing agglomerate sizes as the type of oxide added increased. Electron Dispersive X-Ray Spectroscopy test showed that the Mg mass detected was at least 66.4246, namely on the ZrO2 coating. Mg AZ31 with ZrO2-Na2O7Si3-Al2O3 compounds had the thickest thickness with an average thickness of 19.92 . Then the results of the hardness test showed that the samples experienced brittleness as the amount of ceramic oxide added increased.

Keywords: Electrophoretic Deposition, Oxide ceramic, Magnesium, Coating morphology, Hardness.

References

[1] V. Tsakiris, C. Tardei, F. M. Clicinschi, “Biodegradable Mg alloys for orthopedic implants–a review,” Journal of Magnesium and Alloys, pp. 1884-1905, 2021, doi: https://doi.org/10.1016/j.jma.2021.06.024.
[2] A. Erryani, “Pengaruh Penambahan Magnesium terhadap Sifat Mekanik, Mikrostruktur dan Electrochemical Impedance Spectroscopy Polimer PLA/ABS untuk Material Implan Bioabsorbabel,” Metalurgi, vol. 3, no. 3, pp. 89-98, 2020, http://dx.doi.org/10.14203/metalurgi.v35i3.567.
[3] Agus Dewi Putra, Mojibar Rohman, Mochamad Sulaiman, “Simulasi Pengaruh Waktu dan Gerak Terhadap Desain Implan Sendi Pinggul,” Jurnal Pendidikan Teknik Mesin UNDIKSHA, vol. 9, no. 1, 2021, DOI: https://doi.org/10.23887/jptm.v9i1.28885.
[4] Q. Zhang, H. Zhang, “Corrosion resistance and mechanism of micro-nano structure super-hydrophobic surface prepared by laser etching combined with coating process,” Anti-Corrosion Methods and Materials, vol. 66, no. 3, pp. 264-273, 2019, https://doi.org/10.1108/ACMM-07-2018-1964.
[5] Gavish Uppal et al., “Magnesium based implans for functional bone tissue regeneration – A review,” Jurnal of Magnesium and alloys, vol. 10, pp. 356-386, 2022, https://doi.org/10.1016/j.jma.2021.08.017.
[6] Asoh, S. Ono, “Enhanced uniformity of apatite coating on a PEO film formed on AZ31 Mg alloy by an alkali pretreatment,” Surface and Coatings Technology, vol. 272, pp. 182-189, 2015, https://doi.org/10.1016/j.surfcoat.2015.04.007.
[7] Jiao Xie et al., “Facile fabrication and biological properties of super-hydrophobic coating on magnesium alloy used as potential implant materials,” Surface and Coatings Tecnology, vol. 384, 2020, https://doi.org/10.1016/j.surfcoat.2019.125223.
[8] F. H. Shünemann, “Zirkonia Surface Modifications for Implan Dentistry,” Journal of Materials Science & Engineering, vol. 98, pp. 1294-1305, 2019, https://doi.org/10.1016/j.msec.2019.01.062.
[9] Solihudin Sirojudin, Atiek Rostika Noviyanti, “Pengaruh konsentrasi Natrium Silikat Terhadap Laju Korosi Paduan Aluminium dalam Lingkungan Natrium Klorida 3,5%,” ALCHEMY Jurnal Penelitian Kimia, vol. 16, no. 2, pp. 218-226, 2020, DOI: 10.20961/alchemy.16.2.40927.218-226.
[10] Laila Awalia Saummi, “Karakterisasi sistem lapisan keramik ysz dengan penambahan doping Al2O3,” Skripsi Universitas Islam Negeri Syarif Hidayatullah Jakarta, 2020, http://repository.uinjkt.ac.id/dspace/handle/123456789/53029
[11] E. Budi et al., “Effect of Temperature on Electrodeposited Nickel Nitride Composite Coatings,” Journal of Physics: Conference Series, vol. 1428, no. 1, 2020, https://doi.org/10.1088/1742-6596/1428/1/012015.
[12] Wiwik Dwi Pratiwi, Ratna Budiawati, “Pelapisan Alumina pada Stainless Steel dengan Teknik Electrophoretic Deposition: Pengaruh Rapat Arus,” Seminar Nasional Maritin, Sains, dan Teknologi Terapan, vol. 1, pp. 2548-1509, 2016.
[13] Aprilya Hartinah Wardani, Mochammad Zainuri, “Pengaruh Variasi Massa SiO2 Terhadap Sudut Kontak dan Tranparansi Pada Lapisan Hydrophobic,” JURNAL SAINS DAN SENI ITS, vol. 7, no. 2, pp. 2337-3520, 2018, http://dx.doi.org/10.12962/j23373520.v7i2.34769.
[14] Muhammad Ridwan Harahap, “Elektroforesis: Analisis Elektronika Terhadap Biokimia Genetika,” CIRCUIT Jurnal Ilmiah Pendidikan Teknik ELektro, vol. 2, no. 1, 2018. http://dx.doi.org/10.22373/crc.v2i1.3248.
[15] Daniel Kajanék, “Corrosion Degradation of AZ31 Magnesium Alloy Coated by Plasma Electrolytic Oxidation,” Prosedur Penelitian Transportasi, vol. 40, pp. 51-58, 2019. https://doi.org/10.1016/j.trpro.2019.07.010.
[16] E. Sugiarti et al., “Influence of oxidation temperature on the oxide scale formation of NiCoCrAl coatings,” Journal of Physics: Conference Series, vol. 817, no. 1, p. 012067, 2017, DOI 10.1088/1742-6596/817/1/012067.
[17] Maman Kartaman Ajiriyanto, Anawati Anawati, “Kajian Literatur Karakteristik Lapisan Keramik Oksida yang Ditumbuhkan Diatas Paduan Zirkonium Dengan Metode Plasma Electrolytic Oxidation,” Indonesian Journal of Applied Physics (IJAP), vol. 12, no. 1, p. 19, 2022, DOI : https://doi.org/10.13057/ijap.v12i1.49853.
[18] Y. Yetri et al., “Pengaruh Waktu dan Temperatur Larutan Terhadap Ketebalan dan Kekerasan Permukaan Lapisan Hasil Elektroplating Kuningan pada Baja,” Manutech: Jurnal Teknologi Manufaktur, vol. 12, no. 1, pp. 55-63, 2020, https://doi.org/10.33504/manutech.v12i01.131.

Downloads

Published

2024-01-31

How to Cite

Nurbaiti, S. R., Elvira, B. R., Budi, E., Thaha, Y. N., & Erryani, A. (2024). PENGARUH PENAMBAHAN JENIS KERAMIK OKSIDA TERHADAP MORFOLOGI DAN KEKERASAN MAGNESIUM AZ31 DENGAN PROSES ELECTROPHORETIC DEPOSITION (EPD). PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL), 12(1), FA–219. https://doi.org/10.21009/03.1201.FA33