VARIASI RAPAT ARUS TERHADAP SIFAT MEKANIK DAN MORFOLOGI LAPISAN MAGNESIUM AZ31 DENGAN MENGGUNAKAN METODE ELECTROPHORETIC DEPOSITION (EPD)

Authors

  • Hafsah Mujahidah Program Studi Fisika, FMIPA Universitas Negeri Jakarta, Jl. Rawamangun Muka No. 01, Rawamangun 13220, Indonesia
  • Bunga Rani Elvira Pusat Penelitian Metalurgi dan Material, Badan Riset dan Inovasi Nasional, Gedung 720, Kawasan Sains dan Teknologi B.J Habibie, Banten, 15314, Indonesia
  • Esmar Budi Program Studi Fisika, FMIPA Universitas Negeri Jakarta, Jl. Rawamangun Muka No. 01, Rawamangun 13220, Indonesia
  • Yudi Nugraha Thaha Pusat Penelitian Metalurgi dan Material, Badan Riset dan Inovasi Nasional, Gedung 720, Kawasan Sains dan Teknologi B.J Habibie, Banten, 15314, Indonesia
  • Aprilia Erryani Pusat Penelitian Metalurgi dan Material, Badan Riset dan Inovasi Nasional, Gedung 720, Kawasan Sains dan Teknologi B.J Habibie, Banten, 15314, Indonesia

DOI:

https://doi.org/10.21009/03.1201.FA34

Abstract

Abstrak

Magnesium AZ31 adalah paduan magnesium yang memiliki kekuatan mekanik tinggi dan densitas rendah.Namun, Magnesium AZ31 mudah terkorosi dan perlu dilapisi dengan lapisan pelindung untuk mengingkatkan ketahanannya terhadap korosi. Electrophoretic Deposition (EPD) adalah metode koloid dimana partikel bermuatan dalam suspensi dikenakan elektroforesis untuk mencapai deposisi permukaan padat pada elektroda. Dalam penelitian ini, peneliti melakukan perlakuan variasi rapat arus 0.005 A/mm2, 0.0075 A/mm2, dan 0.01 A/mm2 dengan suspensi yang digunakan adalah ZrO₂. Semakin tinggi rapat arus yang diberikan akan meningkatkan sifat mekanik. Morfologi yang dihasilkan menunjukkan adanya retakan dan persebaran butir yang menjadikan pembentukan gumpalan serta didukung dengan hasil mapping mendapatkan persebaran unsur Mg, O, Na, Si, Al, K, Zr, dan Zn. Nilai kekerasan linear dengan bertambahnya rapat arus yang diberikan 0,005 A/mm², 0,0075 A/mm², dan 0,001 A/mm² berturut-turut menghasilkan 119,42 HV, 121,56 HV, dan 137,88 HV sehingga membuktikan bahwa hasil pelapisan berhasil dilakukan dan juga ditandai dengan adanya kandungan unsur logam Mg, Zr serta ZrO.

Kata-kata kunci: Magnesium AZ31, Elektrophoretic Deposition (EPD), Rapat Arus.

Abstract

Magnesium AZ31 is a magnesium alloy that has high mechanical strength and low density. However, Magnesium AZ31 is easily corroded and needs to be coated with a protective layer to improve its corrosion resistance. Electrophoretic Deposition (EPD) is a colloidal method where charged particles in suspension are subjected to electrophoresis to achieve solid surface deposition on electrodes. In this study, researchers treated variations in current density of 0.005 A/mm2, 0.0075 A/mm2, and 0.01 A/mm2 with the suspension used is ZrO₂. The higher the current density given will improve mechanical properties. The resulting morphology shows the presence of cracks and grain distribution which makes the formation of clumps and is supported by the results of mapping getting the distribution of elements Mg, O, Na, Si, Al, K, Zr, and Zn.The linear hardness values with increasing current density were given 0,005 A/mm², 0,0075 A/mm², and  0,001 A/mm² respectively resulting in 119,42 HV, 121,56 HV, and 137,88 HV thus proving that the coating result were successfull and also characterized by the presence of metal elements Mg, Zr and  ZrO.

Keywords: Magnesium AZ31, Electrophoretic Deposition (EPD), Current Density.

References

[1] I. Karacan et al., “Mechanical testing of antimicrobial biocomposite coating on metallic medical implants as drug delivery system,” Materials Science & Engineering C, vol. 104, pp. 1-12, 2019.
[2] G. Uppal et al., “Magnesium based implants for functional bone tissue regeneration - A review,” Journal of Magnesium and Alloys, vol. 10, pp. 356-386, 2022.
[3] V. S. Saji, “Electrodeposition in bulk metallic glasses,” Materialia, vol. 3, pp. 1-11, 2018, doi:10.1016/j.mtla.2018.09.021.
[4] D. Kajanek et al., “Effect of applied current density of plasma electrolytic oxidation process on corrosion resistance of az31 magnesium alloy,” Communications - Scientific Letters of the University of Zilina, vol. 21, no. 2, pp. 32-36, 2019, doi:10.26552/com.c.
[5] L. Sun et al., “Surface Characterization and Corrosion Resistance of Biomedical AZ31 Mg Alloy Treated by Microarc Fluorination,” Scanning, 2020, doi.org/10.1155/2020/5936789.
[6] I. A. Shahar et al., “Mechanical and Corrosion Properties of AZ31 Mg Alloy Processed by Equal-Channel Angular Pressing and Aging,” Procedia Engineering, vol. 184, pp. 423-431, 2017.
[7] Lutiyatmi, Sutiyoko, R. Afandi, “Optimum Load in Vickers Microhardness Testing of Treated Magnesium Alloy by Thermal Oxidation,” IOP Conf. Series: Materials Science and Engineering, vol. 1082, pp. 1-5, 2021.
[8] M. K. Mumtaz, G. Murtaza, “Enhancement in Corrosion Resistance and Hardness of AZ91DMagnesium Alloy by Carbon Ion Implantation,” Journal of Materials and Physical Sciences, vol. 2, no. 1, pp. 1-11, 2021.
[9] R. Askarnia et al., “Investigation of an environmentally friendly coloring coating for magnesium-lithium alloy micro-arc oxidation,” Surfaces and Interfaces, vol. 20, no. 2020, 100513. doi:10.1016/j.surfin.2020.100513.
[10] Qomariah, A. D. Lestari, “Analisis Perambatan Retak Dan Hasil Sem Pada Beton Normal Dengan Substitusi Pasir Limbah Sunblasting,” Jurnal Teknik Ilmu dan Aplikasi, vol. 3, no. 2, pp. 167-173, 2022.
[11] R. Napitupulu et al., “Pengaruh Waktu Electroplating Chrom Pada Baja Karbon Rendah Terhadap Kekerasan, Laju Korosi Dan Tebal Lapisan,” Citra Sains Teknologi, vol. 1, no. 2, pp. 76-85, 2022.
[12] C. A. Chen et al., “Evaluation of microstructural effects on corrosion behavior of AZ31 magnesium alloy with a Mao coating and electroless ni-P plating,” Journal of Materials Research and Technology, vol. 9, no. 6, pp. 13902-13913, 2020.
[13] J. Sun et al., “Inhibition behavior of edge cracking in the AZ31 magnesium alloy cold rolling process with pulsed electric current,” Metals, vol. 13, no. 2, p. 274, 2023.
[14] Z. Q. Zhang et al., “Corrosion resistance of one-step superhydrophobic polypropylene coating on magnesium hydroxide-pretreated magnesium alloy AZ31,” Journal of Alloys and Compounds, vol. 821, p. 153515, 2020, doi:10.1016/j.jallcom.2019.153515.

Downloads

Published

2024-01-31

How to Cite

Mujahidah, H., Elvira, B. R., Budi, E., Thaha, Y. N., & Erryani, A. (2024). VARIASI RAPAT ARUS TERHADAP SIFAT MEKANIK DAN MORFOLOGI LAPISAN MAGNESIUM AZ31 DENGAN MENGGUNAKAN METODE ELECTROPHORETIC DEPOSITION (EPD). PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL), 12(1), FA–227. https://doi.org/10.21009/03.1201.FA34