PENDEKATAN DEEP LEARNING UNTUK MEMPREDIKSI ENERGI KEADAAN DASAR BERDASARKAN POTENSIAL OSILATOR HARMONIK SEDERHANA DUA DIMENSI
DOI:
https://doi.org/10.21009/03.1201.FA38Abstract
Abstrak
Penelitian ini mengusulkan pendekatan deep learning untuk memprediksi energi keadaan dasar elektron berdasarkan potensial osilator harmonik sederhana dua dimensi dari persamaan Schrödinger. Metode ini menggunakan jaringan saraf konvolusi untuk mempelajari hubungan antara potensial dan energi keadaan dasar. Dataset osilator harmonik sederhana dihasilkan dengan fungsi skalar dimana parameter-parameter dihasilkan secara acak. Kinerja pendekatan yang diusulkan dibandingkan dengan metode numerik, seperti metode beda hingga. Hasil yang diperoleh menunjukkan bahwa pendekatan deep learning lebih efisien dan akurat dalam memprediksi energi keadaan dasar berdasarkan potensial osilator harmonik sederhana dua dimensi. Model mendapatkan mean squared error sebesar 6.37×10-7 mHa pada data uji. Pendekatan ini memiliki potensi aplikasi dalam berbagai bidang, seperti ilmu material, komputasi kimia, dan mekanika kuantum.
Kata-kata kunci: Deep Learning, Persamaan Schrödinger, Energi Keadaan Dasar.
Abstract
This research proposes a deep learning approach to predict the ground state energy of an electron based on the two-dimensional simple harmonic oscillator potential of the Schrödinger equation. The approach uses convolutional neural networks to learn the relationship between the potential and the ground state energy. The simple harmonic oscillator dataset is generated with a scalar function where the parameters are randomly generated. The performance of the proposed approach is compared with numerical methods, such as the finite difference methods. The results show that the deep learning approach is more efficient and accurate in predicting the ground state energy based on the two-dimensional simple harmonic oscillator potential, achieving a mean squared error of 6.37×10-7 mHa on the test data. This remarkable performance demonstrates the potential of the proposed approach for applications in various fields, including material science and quantum mechanics.
Keywords: Deep Learning, Schrödinger Equation, Ground State Energy.
References
[2] D. Pfau et al., “Ab initio solution of the many-electron Schr\"odinger equation with deep neural networks,” Physical Review Research, vol. 2, no. 3, p. 033429, 2020.
[3] Y. P. Sarwono et al., “Numerical variational solution of hydrogen molecule and ions using one-dimensional hydrogen as basis functions,” New Journal of Physics, vol. 22, no. 9, p. 093059, 2020.
[4] F. U. Rahman et al., “Solution of two-electron Schrödinger equations using a residual minimization method and one-dimensional basis functions,” AIP Advances, vol. 11, no. 2, p. 025228, 2021.
[5] Y. P. Sarwono and R. Q. Zhang, “Higher-order Rayleigh-quotient gradient effect on electron correlations,” Journal Chemical Physics, vol. 158, no. 13, p. 134102, 2023.
[6] Y. P. Sarwono et al., “Study on Electron Tunneling Lifetime by Projected Green’s Function Approach in Single Quantum Well Semiconductor,” Indonesian Journal of Computing, Engineering and Design (IJoCED), vol. 5, no. 1, pp. 1-7, 2023.
[7] G. Carleo et al., “Machine learning and the physical sciences,” Reviews of Modern Physics, vol. 91, no. 4, p. 045002, 2019.
[8] J. Hermann et al., “Deep-neural-network solution of the electronic Schrödinger equation,” Nature Chemistry, vol. 12, no. 10, pp. 891-897, 2020.
[9] K. Ryczko et al., “Deep learning and density-functional theory,” Physical Review A, vol. 100, no. 2, p. 022512, 2019.
[10] A. Pavlov et al., “Machine learning and the Schrödinger equation,” in Journal of Physics: Conference Series, IOP Publishing, vol. 1236, no. 1, p. 012050, 2019.
[11] Y. P. Sarwono, R. Q. Zhang, “Higher-order Rayleigh-quotient gradient effect on electron correlations,” Journal Chemical Physics, vol. 158, no. 13, 2023
[12] T. Armon, L. Friedland, “Quantum versus classical effects in the chirped-drive discrete nonlinear Schrödinger equation,” Physic Review A, vol. 100, no. 2, p. 022106, 2019.
[13] TensorFlow. (2023). [Online]. Available: https://zenodo.org/record/7987192
[14] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357-362, 2020.
[15] P. Virtanen et al., “SciPy 1.0: fundamental algorithms for scientific computing in Python,” Nat. Methods, vol. 17, no. 3, pp. 261-272, 2020.
[16] Y. P. Sarwono et al., "Solutions of Atomic and Molecular Schrödinger Equations with One-dimensional Function Approach," Chem. J. Chin. Univ., vol. 42, no. 7, pp. 2286-2298, 2021.