ANALYSIS OF CLOUD-TO-GROUND (CG) LIGHTNING DENSITY MAP IN MANADO CITY USING THE INVERSE DISTANCE WEIGHTING (IDW) METHOD IN 2023

ANALISIS PETA KERAPATAN PETIR TIPE CLOUD TO GROUND (CG) DI WILAYAH KOTA MANADO MENGGUNAKAN METODE INVERSE DISTANCE WEIGHTING (IDW) TAHUN 2023

Authors

  • Haifany Program Studi Fisika, FMIPA, Universitas Negeri Jakarta
  • Agus Setyo Budi Program Studi Fisika, FMIPA, Universitas Negeri Jakarta
  • Wahyudi Nasrul Pratama Pusat Seismologi Teknik, Geopotensial, dan Tanda Waktu (PSGT), BMKG

DOI:

https://doi.org/10.21009/03.1301.FA02

Abstract

Indonesia, located along the equator, experiences a high frequency of lightning strikes. Its geographical position makes the archipelago vulnerable to atmospheric conditions that favor the formation of lightning. The phenomenon of lightning can cause damage to buildings, forest fires, even injury or death if not properly alerted. This research aims to create a map of the density of Cloud to Ground (CG) lightning strikes in the Manado region in 2023. In addition, this research also aims to determine the sub-districts that have the highest lightning density in the Manado City area. The data used is the Manado City boundary obtained from the Badan Pusat Statistik (BPS) and Manado City lightning strike record data during 2023 obtained from the Badan Meteorologi Klimatologi dan Geofisika (BMKG). The method used is Inverse Distance Weighting (IDW) interpolation using QGIS application and Nexstorm Analysis. From the results of the density map made with a 1 km x 1 km grid, Manado City has a very low lightning density level because it is dominated by the color Light Green (1-2). Sub-districts that have the highest lightning density are Wanea and Malalayang which are dominated by Orange (4-5) and Red (>5-9) colors with lightning density levels of 67.133758 (many lightning/km2) and 51.1682243 (many lightning/km2) respectively, while the sub-district with the lowest lightning density is Mapanget with a lightning density level of 6.33165829 (many lightning/km2). The highest number of lightning strikes occurred in May with 869 strikes and the least occurred in February with 15 strikes.

References

[1] Basrin, R., Sutaji, H. I., Geru, A. S., & Tanesib, J. L. (2021). Karakteristik Peristiwa Petir Terkait Curah Hujan Di Wilayah Maumere Nusa Tenggara Timur. Jurnal Fisika: Fisika Sains dan Aplikasinya, 6(2), 75-83.

[2] Nugroho, A. B., & Haryanto, F. (2021). Analisa Pengaruh Tidak Langsung Sambaran Petir Terhadap Pesawat Piper Seneca V Menggunakan Metode Bola Bergulir. J. Tek. Elektro dan Komputasi, 3(2), 78-94.

[3] Nawir, H., Djalal, M. R., & Sonong, S. (2018). Rancang Bangun Sistem Pentanahan Penangkal Petir Pada Tanah Basah dan Tanah Kering pada Laboratorium Teknik Konversi Energi. JEEE-U (Journal of Electrical and Electronic Engineering-UMSIDA), 2(2), 1-39.

[4] Paski, J. A. I., Permana, Y. H., & Pertiwi, D. A. S. (2017, October). Analisis Sebaran Petir Cloud to Ground (CG) di Wilayah Jabodetabek pada Tahun 2016. In PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL) (Vol. 6, pp. SNF2017-EPA).

[5] Azani, A. A., & Septiadi, D. (2021, July). Studi Aktivitas Petir Pada Saat Siklon Tropis Cempaka dan Dahlia di Yogyakarta. In SINASIS (Seminar Nasional Sains) (Vol. 2, No. 1).

[6] Sangkaen, D., Masinambow, V. A., & Engka, D. S. (2021). Analisis Pengaruh Inflasi Belanja Pemerintah Terhadap Tingkat Kemiskinan Kota Manado. Jurnal Pembangunan Ekonomi dan Keuangan Daerah, 19(2), 17-33.

[7] Albanjar, M., Poluan, R. J., & Rengkung, M. M. (2018). Evaluasi pengelolaan persampahan di kota manado (studi kasus: kec. wenang). Spasial, 5(2), 130-140.

[8] Mailoor, M. J., Pasau, G., & Bobanto, M. D. (2018). Pemetaan Distribusi Petir untuk Wilayah Manado Tahun 2013 dan 2014. Jurnal MIPA, 7(1), 16-19.

[9] Abriyanto, H. Y. (2023). Analisis Efektiktifitas Pemasangan Proteksi Petir Berdasarkan Tingkat Ancaman Sambaran Petir Cloud to Ground di Titik Tower Transmisi Air Anyir-Pangkalpinang. Electrician: Jurnal Rekayasa dan Teknologi Elektro, 17(3), 235-241.

[10]Ali, A., Umam, I. H., Heningtyas, H., Charolidya, R., Sanditya, B., Cempaka, A. P., ... & Kiki, D. (2022). Pengembangan Sistem Peringatan Dini Cuaca Ekstrem Terintegrasi Berbasis Y-Model Webgis Development Methodology (Y-WDM). Jurnal Geografi, Edukasi Dan Lingkungan (Jgel), 6(2), 87-100.

[11]Yudanegara, R. A., Astutik, D., Hernandi, A., Soedarmodjo, T. P., & Alexander, E. (2021). Penggunaan Metode Inverse Distance Weighted (Idw) Untuk Pemetaan Zona Nilai Tanah (Studi Kasus: Kelurahan Gedong Meneng, Bandar Lampung). Elipsoida: Jurnal Geodesi dan Geomatika, 4(2), 85-90.

[12]Laurensz, B., Lawalata, F., & Prasetyo, S. Y. J. (2019). Potensi resiko banjir dengan menggunakan citra satelit (Studi kasus: Kota Manado, Provinsi Sulawesi Utara). Indonesian Journal of Computing and Modeling, 2(1), 17-24.

[13]Masruri, M. F. I., & Rahmadini, H. N. (2018). Frekuensi sebaran petir pada kejadian hujan ekstrem di stasiun meteorologi citeko. In Seminar Nasional Geomatika (Vol. 2, pp. 333-340).

Downloads

Published

2025-01-01

How to Cite

Haifany, Setyo Budi, A., & Nasrul Pratama, W. (2025). ANALYSIS OF CLOUD-TO-GROUND (CG) LIGHTNING DENSITY MAP IN MANADO CITY USING THE INVERSE DISTANCE WEIGHTING (IDW) METHOD IN 2023: ANALISIS PETA KERAPATAN PETIR TIPE CLOUD TO GROUND (CG) DI WILAYAH KOTA MANADO MENGGUNAKAN METODE INVERSE DISTANCE WEIGHTING (IDW) TAHUN 2023. PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL), 13(1), FA–13. https://doi.org/10.21009/03.1301.FA02