OPTIMIZATION OF NEAR-INFRARED LED (NIR-LED) POSITION IN NON-INVASIVE BLOOD GLUCOSE AND CHOLESTEROL MEASUREMENTS

OPTIMASI POSISI NEAR-INFRARED LED (NIR-LED) PADA PENGUKURAN KADAR GLUKOSA DAN KOLESTEROL DARAH NON-INVASIF

Authors

  • Meisya Indri Yanti Program Studi Fisika, Universitas Negeri Jakarta
  • Nur Jannah Program Studi Fisika, Universitas Negeri Jakarta
  • Umiatin Program Studi Fisika, Universitas Negeri Jakarta
  • Ernia Susana Program Studi Teknik Elektromedik, Poltekkes Kemenkes Jakarta II

DOI:

https://doi.org/10.21009/03.1301.FA05

Abstract

Cardiovascular disease (CVD) is the leading cause of global mortality, with deaths from this disease projected to rise to 23.3 million by 2030. Along with the increasing prevalence of cardiovascular diseases, non-invasive methods for measuring blood glucose and cholesterol levels using optical sensors consisting of Near-Infrared (NIR) LEDs and photodiodes have been developed and become a critical aspect of monitoring the health conditions of CVD patients. This study aims to identify the optimal placement of the sensor and the ideal part of the finger to ensure maximum and accurate voltage readings by the photodiode. Data collection was conducted using a transmission measurement mode with 180º variations in sensor placement both vertically and horizontally. In the vertical position, the NIR-LED and photodiode were placed opposite each other above and below the finger, while in the horizontal position, they were placed opposite each other on the left and right sides of the finger. Five subjects participated in the characterization process. The test results showed that the vertical sensor placement yielded an average voltage reading of 0.1543V, higher than the horizontal placement, which recorded an average of 0.0702V. Voltage readings for different parts of the finger—thumb, index finger, middle finger, ring finger, and pinky finger—were recorded as 0.1543V, 0.2889V, 0.2223V, 0.2201V, and 0.2139V, respectively. Thus, it can be concluded from this study that vertical sensor placement on the index finger provides the maximum voltage reading. These findings serve as a reference for determining the optimal sensor position to enhance the accuracy of non-invasive blood glucose and cholesterol measurement devices.

References

[1] Martinigsih and A. Wulandari, “Peningkatan peran kader kesehatan dalam deteksi dini risiko penyakit kardiovaskuler dengan Jakarta Kardiovaskuler Skor,” Jurnal Pemberdayaan: Publikasi Hasil Pengabdian kepada Masyarakat, vol. 4, no. 1, pp. 13–22, May 2020, doi: 10.12928/jp.v3i1.1431.

[2] A. P. Setiadi and S. V. Halim, Penyakit kardiovaskular seri pengobatan rasional, 1st ed. Yogyakarta: Graha Ilmu, 2018.

[3] I. A. Widiastuti, R. Cholidah, G. W. Buanayuda, and I. B. Alit, “Deteksi Dini Faktor Risiko Penyakit Kardiovaskuler pada Pegawai Rektorat Universitas Mataram,” Jurnal Pengabdian Magister Pendidikan IPA, vol. 4, no. 1, pp. 137–142, 2021.

[4] D. N. Hafila, Wisudawan, S. Darma, Nurhikmah, and Dahlia, “Prevalensi Penyakit Kardiovaskular pada Masa Pandemic Tahun 2020-2021 di RS Arifin Nu’mang Kabupaten Sidrap,” Fakumi Medical Journal: Jurnal Mahasiswa Kedokteran, vol. 3, no. 10, pp. 710–719, 2023.

[5] Febby, Arjuna, and Maryana, “Dukungan keluarga berhubungan dengan kualitas hidup pasien gagal jantung,” Jurnal Penelitian Perawat Profesional, vol. 5, no. 2, pp. 691–702, 2023, [Online]. Available: http://jurnal.globalhealthsciencegroup.com/index.php/JPPP

[6] S. I. Ketut, W. Kiki, and Y. Pratama, “Infark miokard akut dengan elevasi segmen ST (IMA-EST) anterior ekstensif: laporan kasus,” Ganesha Medicina Journal, vol. 2, no. 1, pp. 22–32, 2022.

[7] W. Arumsari, D. N. Marchamah, F. J. Dilaga, and R. A. Putri, “Strategi Pencegahan dan Pengendalian Faktor Risiko Penyakit Kardiovaskular melalui Peningkatan Pengetahuan dan Pengukuran Kesehatan,” Adi Widya: Jurnal Pengabdian Masyarakat, vol. 7, no. 1, pp. 131–140, 2023.

[8] D. Y. Hasanah et al., “Gangguan Kardiovaskular pada infeksi COVID 19,” Indonesian Journal of Cardiology, pp. 59–68, May 2020, doi: 10.30701/ijc.994.

[9] B. Alsunaidi, M. Althobaiti, M. Tamal, W. Albaker, and I. Al-Naib, “A review of non-invasive optical systems for continuous blood glucose monitoring,” Sensors, vol. 21, no. 20, Oct. 2021, doi: 10.3390/s21206820.

[10] E. Susana, K. Ramli, H. Murfi, and N. H. Apriantoro, “Non-Invasive Classification of Blood Glucose Level for Early Detection Diabetes Based on Photoplethysmography Signal,” Information (Switzerland), vol. 13, no. 2, Feb. 2022, doi: 10.3390/info13020059.

[11] M. S. Arefin, A. H. Khan, and R. Islam, “Non-invasive Blood Glucose Determination using Near Infrared LED in Diffused Reflectance Method,” in 10th International Conference on Electrical and Computer Engineering, 2018, pp. 93–96.

[12] T. Nurmar’atin, H. Sumarti, and A. Wulandari, “Validasi Alat Ukur Kadar Gula Darah secara Non-Invasive Menggunakan Sensor TCRT5000 untuk Mengurangi Limbah Medis,” Jurnal Inovasi dan Pembelajaran Fisika, vol. 9, no. 1, pp. 51–61, 2022.

[13] S. Savira, I. Abdi Bangsa, and L. Nurpulaela, “Implementasi Sistem Monitoring Risiko Peningkatan Kadar Glukosa Darah Secara Non-Invasive Menggunakan Photodioda dan LED,” Jurnal Elektro Luceat, vol. 7, no. 1, 2021.

[14] A. Masnun et al., “Prototype Pengukur Kadar Gula Darah Menggunakan Teknik Non-Invasive Berbasis Mikrokontroler Arduino Uno,” Sains dan Teknologi, vol. 2, no. 1, pp. 31–39, 2023.

[15] W. V. Gonzales, A. T. Mobashsher, and A. Abbosh, “The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors,” Sensors (Switzerland), vol. 19, no. 4. MDPI AG, Feb. 02, 2019. doi: 10.3390/s19040800.

[16] M. Sulehu and A. H. Senrimang, “Program Aplikasi Alat Pengukur Kadar Glukosa Dalam Darah Non-Invasive Berbasis Desktop,” Inspiration: Jurnal Teknologi Informasi dan Komunikasi, vol. 8, pp. 16–24, Jun. 2018.

[17] P. Jain, S. Pancholi, and A. M. Joshi, “An IoMT based non-invasive precise blood glucose measurement system,” in Proceedings - 2019 IEEE International Symposium on Smart Electronic Systems, iSES 2019, Institute of Electrical and Electronics Engineers Inc., Dec. 2019, pp. 111–116. doi: 10.1109/iSES47678.2019.00034.

[18] P. Daarani and A. Kavithamani, “Blood glucose level monitoring by noninvasive method using near infrared sensor,” International Journal of Latest Trends in Engineering and Technology, pp. 141–147, 2017, doi: 10.21172/1.ires.19.

[19] S. Haxha and J. Jhoja, “Optical Based Noninvasive Glucose Monitoring Sensor Prototype,” IEEE Photonics J, vol. 8, no. 6, Dec. 2016.

[20] J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed Signal Process Control, vol. 18, pp. 214–227, 2015, doi: 10.1016/j.bspc.2015.01.005.

[21] Clinical Nursing Policy Team, “Procedure Capillary Blood Sampling (Heel and Finger Prick),” Australia, Jul. 2019.

[22] J. Lenicek Krleza, A. Dorotic, A. Grzunov, and M. Maradin, “Capillary blood sampling: national recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine,” Biochem Med (Zagreb), vol. 25, no. 3, pp. 335–58, 2015, doi: 10.11613/BM.

Downloads

Published

2025-01-01

How to Cite

Meisya Indri Yanti, Nur Jannah, Umiatin, & Ernia Susana. (2025). OPTIMIZATION OF NEAR-INFRARED LED (NIR-LED) POSITION IN NON-INVASIVE BLOOD GLUCOSE AND CHOLESTEROL MEASUREMENTS: OPTIMASI POSISI NEAR-INFRARED LED (NIR-LED) PADA PENGUKURAN KADAR GLUKOSA DAN KOLESTEROL DARAH NON-INVASIF. PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL), 13(1), FA–38. https://doi.org/10.21009/03.1301.FA05