PERFORMANCE COMPARISON OF RANDOM FOREST REGRESSOR AND XGBOOST REGRESSOR ALGORITHMS IN PREDICTING THE BAND GAP OF SILICON SEMICONDUCTOR MATERIALS

PERBANDINGAN PERFORMA ALGORITMA RANDOM FOREST REGRESSOR DAN XGBOOST REGRESSOR DALAM PREDIKSI BAND GAP MATERIAL SEMIKONDUKTOR SILIKON

Authors

  • Muhammad Rizky Anugrah Program Studi Fisika, Universitas Negeri Jakarta, Jakarta Timur
  • Teguh Budi Prayitno Program Studi Fisika, FMIPA Universitas Negeri Jakarta
  • Haris Suhendar Program Studi Fisika, FMIPA Universitas Negeri Jakarta

DOI:

https://doi.org/10.21009/03.1301.FA10

Abstract

Semiconductor materials play a crucial role in various modern technological applications, including electronics, photovoltaics, and optoelectronics. One of the primary properties of semiconductor materials is the band gap, which is the energy required to excite an electron. The band gap is a key parameter influencing the electronic and optical behavior of semiconductor materials. In this study, machine learning is used to predict the band gap values of the semiconductor material silicon. Silicon is one of the most important and widely used semiconductor materials in various modern technological applications. The dataset used is taken from the Materials Project (MP), which provides a wide range of data on tested materials, including their features and characteristics. MP offers information on various types of materials, such as material properties, crystal structures, thermal stability, and others that can be used to build machine learning models. This research aims to develop and compare the performance of two machine learning algorithms, namely Random Forest Regressor and XGBoost Regressor, in predicting the band gap of silicon materials with high accuracy based on the features and characteristics available in the Materials Project dataset. This study also involves a comprehensive evaluation of both machine learning models in predicting the band gap of silicon materials.

References

[1] A. Huda, C. T. Handoko, M. D. Bustan, B. Yudono, and F. Gulo. (2018). New route in the synthesis of Tin(II) oxide micro-sheets and its thermal transformation. Materials Letters, 211, 293–295.

[2] A. Huda et al. (2019). Visible light-driven photoelectrocatalytic degradation of acid yellow 17 using Sn3O4 flower-like thin films supported on Ti substrate (Sn3O4/TiO2/Ti). Journal of Photochemistry and Photobiology A: Chemistry.

[3] A. Hernández-Ramírez and I. Medina-Ramírez, Eds. (2015). Photocatalytic Semiconductors. Cham: Springer International Publishing.

[4] Boylestad, Robert and Nashelsky, Louis. (2002). Electronic Devices and Circuit Theory. New Jersey: Prentice Hall.

[5] Greiner, R.A. (1961), Semiconductor Devices and Applications, McGraw-Hill book Co., inc., New york.

[6] A. Huda et al. (2019). SC. Journal of Photochemistry and Photobiology A: Chemistry.

[7] Arnett, D. (1996). Supernovae and Nucleosynthesis (First ed.). Princeton, New Jersey: Princeton University Press.

[8] Sham, L. J., & Schlüter, M. (1983). Density-Functional Theory of the Energy Gap. Physical Review Letters, 51(22), 1888–1891.

[9] Perdew, J. P., Yang, W., Burke, K., Yang, Z., Gross, E. K. U., Scheffler, M., Scuseria, G. E., Henderson, T. M., Zhang, I. Y., Ruzsinszky, A., et al (2017). Understanding band gaps of solids in generalized Kohn−Sham theory. Proceedings of the National Academy of Sciences

of the United States of America, 114(11), 2801–2806.

[10] Hybertsen, M. S., & Louie, S. G. (1986). Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Physical Review B: Condensed Matter and Materials Physics, 34(8), 5390–5413.

[11] Giarsyani, N., Hidayatullah, A. F., & Rahmadi, R. (2020). Komparasi Algoritma Machine Learning dan Deep Learning untuk Named Entity Recognition: Studi Kasus Data Kebencanaan. JIRE (Jurnal Informatika & Rekayasa Elektronika), 3(1), 48-57.

[12] Ward, L., Dunn, A., Faghaninia, A., Zimmermann, N. E. R., Bajaj, S., Wang, Q., Montoya, J. H., Chen, J., Bystrom, K., Dylla, M., Chard, K., Asta, M., Persson, K., Snyder, G. J., Foster, I., Jain, A. (2018). Matminer: An open source toolkit for materials data mining. Computational Materials Science, 152, 60-69.

[13] S. Sherif. (2019). Evaluating machine learning models: a beginner’s guide to Mean Squared Error (MSE) and R-Squared. Journal of Data Science, 15(4), 215-228.

Downloads

Published

2025-01-01

How to Cite

Muhammad Rizky Anugrah, Teguh Budi Prayitno, & Haris Suhendar. (2025). PERFORMANCE COMPARISON OF RANDOM FOREST REGRESSOR AND XGBOOST REGRESSOR ALGORITHMS IN PREDICTING THE BAND GAP OF SILICON SEMICONDUCTOR MATERIALS: PERBANDINGAN PERFORMA ALGORITMA RANDOM FOREST REGRESSOR DAN XGBOOST REGRESSOR DALAM PREDIKSI BAND GAP MATERIAL SEMIKONDUKTOR SILIKON. PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL), 13(1), FA–72. https://doi.org/10.21009/03.1301.FA10