CLASSIFICATION OF CHICKEN EGG SHELL QUALITY USING EFFICIENTNET BASED ON DIGITAL IMAGES

KLASIFIKASI KUALITAS CANGKANG TELUR AYAM MENGGUNAKAN EFFICIENTNET BERBASIS CITRA DIGITAL

Authors

  • Hernanda Khoiriyah Putri Program Studi Fisika, FMIPA, Universitas Negeri Jakarta
  • Bambang Heru Iswanto Program Studi Fisika, FMIPA, Universitas Negeri Jakarta
  • Haris Suhendar Program Studi Fisika, FMIPA, Universitas Negeri Jakarta

DOI:

https://doi.org/10.21009/03.1301.FA13

Abstract

Cracks in eggshells often occur during the distribution process, both visible and invisible to the naked eye. Cracks in eggshells are a serious concern as they can lead to contamination and health risks for consumers. This study classifies cracks in chicken eggshells based on digital images using a Convolutional Neural Network (CNN)-EfficientNet. The experiment was conducted with a sample of 300 egg images in three conditions: good, cracked, and broken, with 100 images for each condition. The images were captured using a calibrated DSLR camera with a stable background. Data preprocessing included cropping, resizing, and augmentation. The data was split in an 80:20 ratio. Hyperparameters used the Adam optimizer with 50 iterations and a batch size of 32. Model performance was evaluated using loss function metrics (sparse categorical crossentropy), accuracy, and confusion matrix. Classification using EfficientNet-B0 to B3 resulted in accuracy, precision, recall, and F1-Score of 94.52%, 95.75%, 95.71%, and 95.73%; 94.05%, 94.09%, 94.05%, and 94.02%; 94.52%, 94.56%, 94.52%, and 94.54%; and 97.14%, 97.19%, 97.14%, and 97.15%, respectively. Based on the results, classification using EfficientNet shows improved performance as the model complexity increases. The findings suggest that images of eggshell cracks can be utilized for egg quality identification and can be developed for chicken egg quality classification.

References

Zaheer K 2015 An updated review on chicken eggs: production, consumption, management aspects and nutritional benefits to human health. Food and Nutrition Sciences (6): 1208

Badan Pusat Statistik 2021 Konsumsi dan Produksi Telur di Indonesia (Jakarta: Badan Pusat Statistik).

Setiawati T, Afnan R, dan Ulupi N. 2016. Performa produksi dan kualitas telur ayam petelur pada sistem litter dan cage dengan suhu kandang berbeda. Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan (4): 197.

Haoran C, Chuchu H E, Minlan J, dan Xiaoxiao L 2020 Egg crack detection based on Support Vector Machine IEEE 2020 International Conference on Intelligent Computing and Human Computer Interaction (ICHCI) 80

Yang X, Bist R B, Subedi S, dan Chai L 2023 A computer vision-based automatic system for egg grading and defect detection Animals 13 2354

Liu C, Wen H, Yin G, Ling X, dan Ibrahim S M. 2023. Research on intelligent recognition method of egg cracks based on EfficientNet network model. In Journal of Physics: Conference Series 2560 012015.

Dhruv P dan Naskar S. 2020. Image classification using Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN): A Review. In: Swain, D., Pattnaik, P., & Gupta, P (eds.) Machine learning and information processing: Advances in intelligent systems and

computing: Proceedings of ICMLIP 2019 (Singapore: Springer) p 1101.

Gonzales R C dan Woods R E. 2018. Digital image processing (New York: Pearson)

Widyaningsih M. 2016. Identifikasi kematangan buah apel dengan gray level co-occurrence matrix (GLCM) Jurnal saintekom 6 71

Kaswar A B, Risal A A N, dan Adiba F. 2020. Klasifikasi tingkat kematangan buah markisa menggunakan jaringan syaraf tiruan berbasis pengolahan citra digital. Journal of Embedded Systems, Security and Intelligent Systems 1 1.

Putra W S E, Wijaya A Y, dan Soelaiman R. 2016. Klasifikasi citra menggunakan Convolutional Neural Network (CNN) pada caltech 101 Jurnal Teknik ITS 5.

Awangga R M dan Batubara N A. 2020. Tutorial object detection plate number with convolution neural network (CNN) (Bandung: Kreatif Industri Nusantara).

Irfan M, Sumbodo B A A, dan Candradewi I. 2017. Sistem klasifikasi kendaraan berbasis pengolahan citra digital dengan metode multilayer perceptron Indonesian. Journal of Electronics and Instrumentation System (IJEIS) 7:139.

Dey S. 2018. Hands-on image processing with python (Mumbai: Packt Publishing Ltd)

Stanley J, Lubis C, dan Handhayani T. 2022. Sistem pengenalan Covid-19 berdasarkan foto x- ray paru dengan metode EfficientNet-B0. Jurnal Ilmu Komputer dan Sistem Informasi: 10.

Tan M dan Le Q. 2019. Efficientnet: Rethinking model scaling for convolutional neural networks. Proceedings of the 36th International Conference on Machine Learning in Proceedings of Machine Learning Research 97 6105.

Downloads

Published

2025-01-01

How to Cite

Hernanda Khoiriyah Putri, Bambang Heru Iswanto, & Haris Suhendar. (2025). CLASSIFICATION OF CHICKEN EGG SHELL QUALITY USING EFFICIENTNET BASED ON DIGITAL IMAGES: KLASIFIKASI KUALITAS CANGKANG TELUR AYAM MENGGUNAKAN EFFICIENTNET BERBASIS CITRA DIGITAL. PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL), 13(1), FA–93. https://doi.org/10.21009/03.1301.FA13