STUDY OF ENERGY BAND GAP IN NANO ZnO STRUCTURE FROM REFLECTANCE PATTERNS
STUDI BAND GAP ENERGI STRUKTUR NANO ZnO DARI POLA REFLEKTANSI
DOI:
https://doi.org/10.21009/03.1301.FA19Abstract
Nanostructured Zinc Oxide (ZnO) has been successfully synthesized using hydrothermal method. All precursors were mixed and stirred using an ultrasonic cleaner for 10 minutes until the sample was homogeneously mixed. Then, the samples were put into a Teflon-coated stainless steel autoclave and heated at 100ºC for 6 hours. Characterization of the optical properties of ZnO nanoparticles was carried out using UV-Vis Diffuse Reflectance spectrophotometer test. Furthermore, the optical properties will be analyzed referring to the reflectance pattern so that the band gap energy of ZnO nanoparticles can be determined using the Tauc Plot technique. The results of Tauc Plot analysis show that the band gap energy of ZnO nanoparticles is at 2.97 eV.
References
[1] Affandy, H. 2020. Integrasi Nanoteknologi Dalam Pembelajaran Di Era Society 5.0: Kajian dari Perspektif Pembelajaran Fisika. Jurnal Materi dan Pembelajaran Fisika, 10(2), 97-104.
[2] Gehrke, P. J., & Gehrke, P. J. 2018. Public understanding of nanotechnology: how publics know. Nano-Publics: Communicating Nanotechnology Applications, Risks, and Regulations, 21-37.
[3] L. Schlur, J. R. Calado and D. Spitzer. 2018. "Synthesis of Zinc Oxide Nanorods or Nanotubes on One Side of a Microcantilever," The Royal Society of Chemistry.
[4] I. Wallace, O. V. Eshu, O. B. Chukwunonso and U. C. Okoro. 2015. "Synthesis and Characterization of Zinc Oxide (ZnO) Nanowire," Journal of Nanomedicine and Nanotechnology, vol. VI, no. 5.
[5] C. X. Xu, G. P. Zhu, J. Kasim, S. T. Tan, Y. Yang, X. Li, Z. X. Shen and X. W. Sun. 2008. "Spatial Distribution of Defect in ZnO Nanodisks," Current Applied Physics, vol. IX, pp. 571- 576.
[6] S. W. Kim, N. T. Khoa, J. W. Yun, D. v. Thuan, J. E. Kim and S. H. Hahn. 2016. "Hierarchical ZnO Nanosheets/Nanodisks Hydrothermally Grown on Microrod Backbones," Material Chemistry and Physics, pp. 1-8.
[7] Tenailleau, C., Salek, G., Le, T. L., Duployer, B., Demai, J. J., Dufour, P., & Guillemet-Fritsch, S. (2017). Heterojunction p-Cu 2 O/ZnO-n solar cell fabricated by spark plasma sintering. Materials for Renewable and Sustainable Energy, 6, 1-7.
[8] Bi, S., Li, Y., Liu, Y., Ouyang, Z., & Jiang, C. (2018). Physical properties of 2D and 3D ZnO materials fabricated by multi-methods and their photoelectric effect on organic solar cells. Journal of Science: Advanced Materials and Devices, 3(4), 428–432.
[9] Hernowo, A., & Nurhasanah, I. (2019). Kristalinitas Dan Ukuran Nanopartikel Zno Yang Dikalsinasi Pada Temperatur 100Oc Dan 200Oc. Berkala Fisika, 22(4), 125-131.
[10] M. Bicer, M. Gokcen and E. Orhan. 2022. "Fabrication and Photoanode Performance of ZnO Nanoflowers in ZnO-based DyeSensitized Solar Cells," Optical Materials, vol. 131.
[11] A. S. Z. Lahewil, S. H. Zyoud, N. M. Ahmed, A. F. Omar and N. Z. N. Azman. 2022. "Synthesis ZnO Nanoclusters Micro Active Area using Continues Wave Blue Laserassisted Chemical Bath Deposition based on UV Photodetector," Optik, vol. 260.
[12] Y. Anggraeni, N. Mufti and A. Taufiq. 2017. "Performa Nanogenerator ZnO Nanorods dan PLA pada Substrat Stainless Steel," Seminar Nasional Fisika dan Pembelajarannya 2017.
[13] T. C. Raganata, H. Aritonang and E. Suryanto. 2019. "Sintesis Fotokatalis Nanopartikel ZnO untuk Mendegradasi Zat Warna Methylene Blue," Chem. Prog, vol. 12, no. 2, pp. 54-58.
[14] Saragi, T., Purba, Y. R., Du, S. A., Oktaviani, M., Susilawati, T., Risdiana, R., & Bahtiar, A. 2016. Karakteristik Nanopartikel ZnO: Studi Efek Pelarut pada Proses Hidrothermal. Jurnal Material dan Energi Indonesia, 6(01), 31-35.
[15] Lestari, V. P., Abrar, & Fathona, I. W. (2019). Sintesis Nanostruktur ZnO Dengan Metode Hidrotermal Untuk Aplikasi Sensor Gas Butana. E-Proceeding of Engineering, 6 (2), 5375–5382.
[16] Wasly, H. S., El-Sadek, M. S. A., & Henini, M. (2018). Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method. Applied Physics A: Materials Science and Processing, 124 (1).
[17] Tauc, J.; Grigorovici, R.; Vancu, A. 1966. Optical Properties And Electronic Structure of Amorphous Germanium. Phys. Status Solidi B, 15, 627−637.
[18] Davis, E.; Mott, N. 1970. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903−0922.
[19] Mott, N. F.; Davis, E. A. 2012. Electronic Processes in Non-Crystalline Materials; OUP Oxford.
[20] Makuła, P., Pacia, M., & Macyk, W. (2018). How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. The journal of physical chemistry letters, 9(23), 6814-6817.
[21] Agusu, L., & Eso, R. 2023. Pengaruh penambahan mangan alam terhadap daya absorbsi cahaya tampak pada keramik TiO2. Einstein's: Research Journal of Applied Physics, 1(1), 1-8.
[22] P. Winget et al., “Defect-driven interfacial electronic structures at an organic/metal-oxide semiconductor heterojunction,” Advanced Materials, vol. 26, no. 27, pp. 4711-4716, 2014
[23] Iwan, S., Fauzia, V., Umar, A. A., & Sun, X. W. (2016, April). Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction. In AIP Conference Proceedings (Vol. 1729, No. 1). AIP Publishing.
[24] Manurung, P., Suprihatin, S., & Liani, F. 2024. Peningkatan Fungsi Daun Chaya sebagai Agen Reduksi pada Sintesis Seng Nanopartikel. Jurnal Teori dan Aplikasi Fisika, 39-48.