EFFECT OF PRECURSOR SOLUTION COMBINATION ON BANDGAP ENERGY OF ZNO SYNTHESIZED USING THE HYDROTHERMAL METHOD

PENGARUH KOMBINASI LARUTAN PREKURSOR TERHADAP BANDGAP ENERGY DARI ZNO YANG DISINTESIS DENGAN METODE HIDROTERMAL

Authors

  • Shafa Rahma Cyrilla Program Studi Fisika, FMIPA Universitas Negeri Jakarta
  • Rahmat Setiawan Mohar Pusat Riset Fotonika, Badan Riset dan Inovasi Nasional
  • Iwan Sugihartono Program Studi Fisika, FMIPA, Universitas Negeri Jakarta
  • Maykel Manawan Pusat Riset Material Maju, Badan Riset dan Inovasi Nasional

DOI:

https://doi.org/10.21009/03.1301.FA20

Abstract

Nanostructure ZnO has been synthesized via hydrothermal method at 95ºC for 4 hours using different combinations of precursor solutions, namely zinc nitrate seng nitrat hexahydrate and ammoniac [NH3], as well as zinc nitrate hexahydrate [Zn(NO3)2·6H2O] and hexamethylenetetramine (HMT) [C6H12N4]. The optical properties were then investigated by scanning X-ray diffraction and UV-Vis Diffuse Reflectance spectrophotometer. The analysis of optical properties is carried out with reference to the reflectance pattern, so that the energy gap of ZnO nanostructures can be determined using the Tauc Plot technique. The Tauc Plot analysis results show that the band gap energy with NH3 precursor (3.09 eV) is lower than that using HMT (3.22 eV).

References

[1] Mohammed, A. M., Ibraheem, I. J., Obaid, A. S., & Bououdina, M. (2017). Nanostructured ZnO-based biosensor: DNA immobilization and hybridization. Sensing and Bio-sensing Research, 15, 46–52.

[2] Agarwal, S., Rai, P., Gatell, E. N., Llobet, E., Güell, F., Kumar, M., & Awasthi, K. (2019). Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sensors and Actuators B: Chemical, 292, 24–31.

[3] Adedokun, O., Bello, I. T., Sanusi, Y. K., & Awodugba, A. O. (2020). Effect of precipitating agents on the performance of ZnO nanoparticles-based photo-anodes in dye-sensitized solar cells. Surfaces and Interfaces. https://doi.org/10.1016/j.surfin.2020.100656

[4] Zou, X., Ke, J., Hao, J., Yan, X., & Tian, Y. (2022). A new method for synthesis of ZnO flower-like nanostructures and their photocatalytic performance. Physica B: Condensed Matter, 624, 413395.

[5] Sugihartono, I., Fauzia, V., Umar, A., & Sun, X. (2016). Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction. AIP Conference Proceedings, 1729, 020031. https://doi.org/10.1063/1.4946934

[6] Cai, Z., Park, J., & Park, S. (2023). Synthesis of flower-like ZnO and its enhanced sensitivity towards NO2 gas detection at room temperature. Chemosensors, 11(6), 322.

[7] Schlur, L., Calado, J. R., & Spitzer, D. (2018). Synthesis of zinc oxide nanorods or nanotubes on one side of a microcantilever. Royal Society Open Science, 5(8), 180510.

[8] Alshehri, N. A., Lewis, A. R., Pleydell-Pearce, C., & Maffeis, T. G. (2018). Investigation of the growth parameters of hydrothermal ZnO nanowires for scale-up applications. Journal of Saudi Chemical Society, 22(5), 538–545.

[9] Nakate, U. T., Yu, Y. T., & Park, S. (2022). Hydrothermal synthesis of ZnO nanoflakes composed of fine nanoparticles for H2S gas sensing application. Ceramics International, 48(19), 28822–28829.

[10] Hong, M., Meng, J., Yu, H., Du, J., Ou, Y., Liao, Q., & Zhang, Y. (2021). Ultra-stable ZnO nanobelts in electrochemical environments. Materials Chemistry Frontiers, 5(1), 430–437.

[11] Yan, L., Uddin, A., & Wang, H. (2015). ZnO tetrapods: synthesis and applications in solar cells. Nanomaterials and Nanotechnology, 5, 19.

[12] Sugihartono, I., Dianisya, D., & Isnaeni, I. (2018, December). Crystal structure analyses of ZnO nanoparticles growth by simple wet chemical method. In IOP Conference Series: Materials Science and Engineering (Vol. 434, p. 012077). IOP Publishing.

[13] Hasnidawani, J. N., Azlina, H. N., Norita, H., Bonnia, N. N., Ratim, S., & Ali, E. S. (2016). Synthesis of ZnO nanostructures using sol-gel method. Procedia Chemistry, 19, 211–216.

[14] Krasovska, M., Gerbreders, V., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E., & Ogurcovs, A. (2020). Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm. https://doi.org/10.1039/c9ce01556f

[15] Sadraei, R. (2016). A simple method for preparation of nano-sized ZnO. Research and Reviews: Journal of Chemistry, 5, 45–49.

[16] Khudiar, S. S., Mutlak, F. A. H., & Nayef, U. M. (2021). Synthesis of ZnO nanostructures by hydrothermal method deposited on porous silicon for photo-conversion application. Optik, 247, 167903.

[17] Shaat, S. K. K., Musleh, H., Zayed, H., Asad, J., & AlDahoudi, N. (2020). Structural parameters of hydrothermally synthesized ZnO nanostructure and their solar cell applications. Nano-Structures & Nano-Objects, 23, 100515.

[18] Smita, D., Souvik, D., & Asit Kumar, K. (2021). Role of precursor-dependent nanostructures of ZnO on optical and photocatalytic activity. Materials Chemistry and Physics. https://doi.org/10.1016/j.matchemphys.2021.124872

[19] Wasly, H. S., El-Sadek, M. S. A., & Henini, M. (2018). Influence of reaction time and synthesis temperature on ZnO nanoparticles synthesized hydrothermally. Applied Physics A: Materials Science & Processing, 124(1). https://doi.org/10.1007/s00339-017-1482-4

[20] Kathalingam, A., Park, H. C., Kim, S. D., Kim, H. S., Velumani, S., & Mahalingam, T. (2015). Synthesis of ZnO nanorods using different precursor solutions. Journal of Materials Science: Materials in Electronics, 26(8), 5724–5734. https://doi.org/10.1007/s10854-015-3129-6

[21] Gatou, M. A., Lagopati, N., Vagena, I. A., Gazouli, M., & Pavlatou, E. A. (2022). ZnO nanoparticles from different precursors and their photocatalytic potential for biomedical use. Nanomaterials, 13(1), 122.

[22] Jangir, L. K., Kumari, Y., Kumar, A., Kumar, M., & Awasthi, K. (2017). Investigation of luminescence and structural properties of ZnO nanoparticles synthesized with different precursors. Materials Chemistry Frontiers, 1(7), 1413–1421.

[23] Murphy, A. B. (2007). Band-gap determination from DR measurements of semiconductor films and application to photoelectrochemical water-splitting. Solar Energy Materials and Solar Cells, 91(14), 1–12.

[24] Chen, Z., & Jaramillo, T. F. (2017). The use of UV-visible spectroscopy to measure the band gap of a semiconductor. Department of Chemical Engineering, Stanford University.

[25] Zheng, Y., Zheng, L., Zhan, Y., Lin, X., & Wei, K. (2007). Ag/ZnO heterostructure nanocrystals: Synthesis, characterization, and photocatalysis. Inorganic Chemistry, 46, 6980–6986.

[26] Trimuda, G. E., & Maddu, A. (2010). Pengaruh ketebalan terhadap sifat optik lapisan semikonduktor Cu2O yang dideposisikan dengan metode chemical bath deposition (CBD). Jurnal Ilmu Pengetahuan dan Teknologi TELAAH, 28, 1–4.

[27] Coulter, J. B., & Birnie III, D. P. (2018). Assessing Tauc plot slope quantification: ZnO thin films as a model system. Physica Status Solidi (B), 255(3), 1700393.

[28] Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (B), 15(2), 627–637.

[29] Jubu, P. R., Yam, F. K., Igba, V. M., & Beh, K. P. (2020). Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data: A case study of β-Ga2O3. Journal of Solid State Chemistry, 290, 121576.

Downloads

Published

2025-01-01

How to Cite

Shafa Rahma Cyrilla, Rahmat Setiawan Mohar, Iwan Sugihartono, & Maykel Manawan. (2025). EFFECT OF PRECURSOR SOLUTION COMBINATION ON BANDGAP ENERGY OF ZNO SYNTHESIZED USING THE HYDROTHERMAL METHOD: PENGARUH KOMBINASI LARUTAN PREKURSOR TERHADAP BANDGAP ENERGY DARI ZNO YANG DISINTESIS DENGAN METODE HIDROTERMAL. PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL), 13(1), FA–135. https://doi.org/10.21009/03.1301.FA20