EFFECT OF HIGH CURRENT DENSITY ON THE MORPHOLOGY OF NI/TIN/ALN COMPOSITE LAYERS USING PULSE ELECTRODEPOSITION METHOD

PENGARUH RAPAT ARUS TINGGI PADA MORFOLOGI LAPISAN KOMPOSIT NI/TIN/ALN DENGAN METODE ELEKTRODEPOSISI ARUS PULSA

Authors

  • Dhea Laila Putri Afifah Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta
  • Esmar Budi Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta
  • Teguh Budi Prayitno Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta

DOI:

https://doi.org/10.21009/03.1301.FA26

Abstract

Pulse current for electrodeposition has the advantage of forming smaller grain sizes, porosity and homogeneity, thus having an impact on improving material properties. In this research, the composition of the electrolyte solution that will be used are NiCl2.6H2O 0.17 M, NiSO4.6H2O 0.38 M, TiN 6 gr/L, AlN 10gr/L, H3BO3 0.49 M, and Sodium Dodecyl Sulfate (SDS) 0.6 gr/L. Platinum (Pt) will be used on the counter electrode and Tungsten Carbide (WC) will be used on the working electrode. Variations in pulse current density that will be used are 1 mA/mm2 and 1.2 mA/mm2. The electrodeposition process will be carried out for 30 minutes at 40°C temperature and stirring rate 600 rpm. After the electrodeposition process, morphological characterization was examinated using a Scanning Electron Microscope (SEM). SEM results at 1000x magnification show that at variations in pulse current density of 1 mA/mm2 the particle size is larger, the distribution of particles is quite even, there are neither cracks nor visible agglomeration on the substrate surface, whereas at a current density of 1.2 mA/mm2 ,the particles look smaller, the particles are evenly distributed, there are neither visible cracks nor agglomerations on the substrate surface, so the surface looks smoother. The results show that as the current density increases, the layer surface morphology will become smoother.

References

[1] F. Doğan, M. Uysal, E. Duru, H. Akbulut, and S. Aslan, “Pulsed electrodeposition of Ni-B/TiN composites: effect of current density on the structure, mechanical, tribological, and corrosion properties,” J. Asian Ceram. Soc., vol. 8, no. 4, pp. 1271–1284, Oct. 2020, doi: 10.1080/21870764.2020.1840704.

[2] V. D. Jović, U. Č. Lačnjevac, and B. M. Jović, “Electrodeposition and Characterization of Alloys and Composite Materials,” 2014, pp. 1–84. doi: 10.1007/978-1-4939-0289-7_1.

[3] N. P. Wasekar, N. Hebalkar, A. Jyothirmayi, B. Lavakumar, M. Ramakrishna, and G. Sundararajan, “Influence of pulse parameters on the mechanical properties and electrochemical corrosion behavior of electrodeposited Ni-W alloy coatings with high tungsten content,” Corros. Sci., vol. 165, p. 108409, Apr. 2020, doi: 10.1016/j.corsci.2019.108409.

[4] P. C. Okoye, S. O. Azi, T. F. Qahtan, T. O. Owolabi, and T. A. Saleh, “Synthesis, properties, and applications of doped and undoped CuO and Cu2O nanomaterials,” Mater. Today Chem., vol. 30, p. 101513, Jun. 2023, doi: 10.1016/j.mtchem.2023.101513.

[5] M. Dehestani, S. Sharafi, and G. R. Khayati, “The effect of pulse current density on the microstructure, magnetic, mechanical, and corrosion properties of high-entropy alloy coating Fe–Co–Ni–Mo–W, achieved through electro co-deposition,” Intermetallics, vol. 147, p.

107610, Aug. 2022, doi: 10.1016/j.intermet.2022.107610.

[6] P. Sivasakthi and M. V. Sangaranarayanan, “Influence of pulse and direct current on electrodeposition of Ni Gd2O3 nanocomposite for micro hardness, wear resistance and corrosion resistance applications,” Compos. Commun., vol. 13, pp. 134–142, Jun. 2019, doi:

10.1016/j.coco.2019.04.008.

[7] M. Ghaemi, “Effects of direct and pulse current on electrodeposition of manganese dioxide,” J. Power Sources, vol. 111, no. 2, pp. 248–254, Sep. 2002, doi: 10.1016/S0378- 7753(02)00309-9.

[8] J. Zhang et al., “The Effect of Electroplating Nickel on the Mechanical Properties of Brittle Mg-Based Bulk Metallic Glasses,” Coatings, vol. 13, no. 9, p. 1598, Sep. 2023, doi: 10.3390/coatings13091598.

[9] J. G. Portillo, J. F. Hernández-Paz, M. Gomez-Mares, I. Olivas-Armendariz, and C. A. Rodriguez González, “Synthesis of nanostructured Nickel compounds on conductive metallic substrates,” Mater. Lett., vol. 257, p. 126676, Dec. 2019, doi: 10.1016/j.matlet.2019.126676.

[10] Esmar Budi, Bagus Ksatriotomo, Alief Restu, and Agus Setyo Budi, “KOMPOSISI DAN MORFOLOGI PERMUKAAN LAPISAN KOMPOSIT Ni-TiAlN ELEKTRODEPOSISI,” Pros. Bid. Fis. Semirata, pp. 348–353, 2015.

[11] Z. Yang, S. Yi, Y. Wang, S. Zhao, and W. Shi, “Study on Characteristics and Microstructure of Ni-AlN Thin Coatings Prepared via Different Electrodeposition Techniques,” Int. J. Electrochem. Sci., vol. 17, no. 2, p. 220226, Feb. 2022, doi: 10.20964/2022.02.34.

[12] İ. H. Karahan and R. Özdemir, “A Comparison for Grain Size Calculation of Cu-Zn Alloys with Genetic Programming and Neural Networks,” Acta Phys. Pol. A, vol. 128, no. 2B, p. B- 427-B-432, Aug. 2015, doi: 10.12693/APhysPolA.128.B-427.

[13] A. M. Rashidi and A. Amadeh, “The effect of current density on the grain size of electrodeposited nanocrystalline nickel coatings,” Surf. Coatings Technol., vol. 202, no. 16, pp. 3772–3776, May 2008, doi: 10.1016/j.surfcoat.2008.01.018.

Downloads

Published

2025-01-01

How to Cite

Dhea Laila Putri Afifah, Esmar Budi, & Teguh Budi Prayitno. (2025). EFFECT OF HIGH CURRENT DENSITY ON THE MORPHOLOGY OF NI/TIN/ALN COMPOSITE LAYERS USING PULSE ELECTRODEPOSITION METHOD: PENGARUH RAPAT ARUS TINGGI PADA MORFOLOGI LAPISAN KOMPOSIT NI/TIN/ALN DENGAN METODE ELEKTRODEPOSISI ARUS PULSA. PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL), 13(1), FA–175. https://doi.org/10.21009/03.1301.FA26