DESIGN AND DEVELOPMENT OF A PULSE GENERATOR SYSTEM FOR THE FORMATION AND CHARACTERIZATION OF Ni-TiN/Si3N4 COMPOSITE LAYERS USING PULSE CURRENT DENSITY ELECTRODEPOSITION METHOD
RANCANG BANGUN SISTEM PULSE GENERATOR UNTUK PEMBENTUKAN DAN KARAKTERISASI LAPISAN KOMPOSIT Ni-TiN/Si3N4 DENGAN METODE ELEKTRODEPOSISI RAPAT ARUS PULSA
DOI:
https://doi.org/10.21009/03.1301.FA29Abstract
This research aims to make a pulse generator system and test the design results in the electrodeposition process by analyzing the composition and surface morphology of the Ni-TiN/Si3N4 composite layer formed. The Ni-TiN/Si3N4 coating is used because it can increase hardness, seal diffusion to the substrate, and prevent oxidation at high temperatures. Tungsten carbide (WC) is coated to reduce wear, improve the surface, increase adhesion, and strength of the substrate without changing the original properties. Pulse current electrodeposition uses Pulse Width Modulation (PWM) circuit with IC 555 as pulse generator. The result of the Pulse Generator system design is a pulse wave that can be adjusted by adjusting the duty cycle value using a potentiometer and can be observed using an oscilloscope, and the pulse height or output current can be adjusted as needed and can be measured using a multimeter. The electrodeposition process was carried out for 30 minutes at 40ºC with a stirring rate of 600 rpm. Morphological scanning using a Scanning Electron Microscope (SEM) showed a rough surface, uneven particle size distribution, and agglomeration in the formed layer. Energy Dispersive Spectroscopy (EDS) scanning results showed the success of the coating formed with the presence of Ni, TiN, and Si3N4 metal elements with a thickness of 2.7191 μm.
References
[1] Rajendran, P. R., Duraisamy, T., Chidambaram Seshadri, R., Mohankumar, A., Ranganathan, S., Balachandran, G., ... & Renjith, L. (2022). Optimisation of HVOF Spray Process Parameters to Achieve Minimum Porosity and Maximum Hardness in WC-10Ni-5Cr Coatings. Coatings,
12(3), 339.
[2] Liu, S., Li, Y., Chen, P., Li, W., Gao, S., Zhang, B., & Ye, F. (2017). Residual stresses and mechanical properties of Si3N4/SiC multilayered composites with different SiC layers. Boletin de la Sociedad Espanola de Ceramica y Vidrio, 56(4), 147–154.
[3] Sharma, A. K., Bhandari, R., Aherwar, A., Rimašauskienė, R., & Pinca-Bretotean, C. (2020). A
Study of Advancement in Application Opportunities of Aluminum Metal Matrix Composites. Materials Today: Proceedings, 26, 2419-2424.
[4] Budi, E., Kusumawati, L., Assita, W. A., Indrasari, W., Sugihartono, I., & Teguh, B. P. (2020). Effect of Temperature on Electrodeposited Nickel Nitride Composite Coatings. In Journal of Physics: Conference Series (Vol. 1428, No. 1, p. 012015). IOP Publishing.
[5] Alhosseini, S. H. N., & Mousavi, S. R. (2019). The Effect of Oxide, Carbide, Nitride and Boride Additives on Properties of Pressureless Sintered SiC: A Review. Journal of the European Ceramic Society, 39(7), 2215-2231.
[6] Aranzales, D., Wijenberg, J. H. O. J., & Koper, M. T. M. (2019). Voltammetric Study of TiN Electrodeposition on Polycrystalline Gold from Sulfuric and Methanesulfonic Acid. Journal of The Electrochemical Society, 166(8), D283.
[7] Fayomi, O. S. I., Ayodeji, S. A., Anyanwu, B. U., Nkiko, M. O., & Dauda, K. T. (2021). Effect of Electrodeposition Mechanism and α-Si3N4/ZrBr2 Doped Composite Particle on the Physicochemical and Structural Properties of Processed NiPZn Coatings on Mild Steel for
Advance Application. In Key Engineering Materials (Vol. 900, pp. 61-73). Trans Tech Publications Ltd.
[8] Zhang, J., Hu, H., Liu, X., & Li, D. S. (2019). Development of The Applications of Titanium Nitride in Fuel Cells. Materials today chemistry, 11, 42-59.
[9] Sharma, P., Sharma, S., & Khanduja, D. (2015). Production and Some Properties of Si3N4 Reinforced Aluminium Alloy Composites. Journal of Asian Ceramic Societies, 3(3), 352-359.
[10] Lu, X., Blawert, C., Scharnagl, N., & Kainer, K. U. (2013). Influence of incorporating Si3N4 particles into the oxide layer produced by plasma electrolytic oxidation on AM50 Mg alloy on coating morphology and corrosion properties. Journal of Magnesium and Alloys, 1(4), 267–274.
[11] A. Karimzadeh, M. Aliofkhazraei, F. C. Walsh, “A Review of Electrodeposited Ni-Co Alloy and Composite Coatings: Microstructure, properties and applications,” Surface and Coatings Technology, vol. 372, pp. 463-498, 2019, doi: https://doi.org/10.1016/j.surfcoat.2019.04.079.
[12] B. Vanrenterghem et al., “Cutting the Gordian Knot of Electrodeposition via Controlled Cathodic Corrosion Enabling the Production of Supported Metal Nanoparticles below 5 nm,” vol. 226, pp. 396-402, 2018, doi: https://doi.org/10.1016/j.apcatb.2017.12.080.
[13] V. Torabinejad et al., “Electrodeposition of Ni-Fe Alloys, Composites, and Nano Coatings–a Review,” Journal of Alloys and Compounds, vol. 691, pp. 841-859, 2017, doi: https://doi.org/10.1016/j.jallcom.2016.08.329.
[14] Ghosh, Swatilekha, “Electroless Copper Deposition: A Critical Review,” Thin Solid Films, vol. 669, pp. 641-658, 2019, doi: https://doi.org/10.1016/j.tsf.2018.11.016
[15] A. M. A. Mohamed, T. G. Golden, “Electrodeposition of Composite Materials,” BoD- Books on Demand, 2016, [Online]. Available:
https://books.google.com/books?hl=id&lr=&id=QmQDwAAQBAJ&oi=fnd&pg=PA187&dq=Cooke
[16] F. Xia et al., “Effect of Pulse Current Density on Microstructure and Wear Property of Ni-TiN Nanocoatings Deposited via Pulse Electrodeposition,” Applied Surface Science, vol. 538, p. 148139, 2021, doi: https://doi.org/10.1016/j.apsusc.2020.148139.
[17] Saputro Y. dkk., “Model dan Pembuatan Sistem Pemberi Makan Ayam Petelur Otomatis Dengan Sistem Pengendali Timer”, Jurnal Cahaya BAGASKARA, Vol. 4 No. 1, 2019, doi:https://jurnal.umpp.ac.id/index.php/cahaya_bagaskara/index.
[18] Wijaya, H. T. dkk., “Simulasi Sistem Pengendali Motor Stepper dengan Metode Pulse Weidth Modulation”, Jurnal Elektro Vol. 15 No. 1, 2022, doi: https://ejournal.atmajaya.ac.id/index.php/JTE.
[19] Pauzan, M., “Rancang Bangun Bel Rumah Menggunakan IC 555 Sebagai Monostable dan Astbale Multivibrator”, Jurnal Ilmu Komputer, Vol. 10 No. 01, 2019, pp: 61-67, doi:http://45.118.112.109/ojspasim/index.php/ilkom/article/view/151.
[20] M. M. Abrar, “Design and Implementation of Astable Multivibrator using 555 Timer,” IOSR Journal of Electrical and Electronics Engineering, vol. 12, no. 1, pp. 22-29, 2017, doi: https://doi.org/10.9790/1676-1201022229.
[21] P. Sivasakthi, M. V. Sangaranarayanan, “Influence of Pulse and Direct Current on Electrodeposition of Ni Gd2O3 Nanocomposite for Micro Hardness,” Wear Resistance and Corrosion Resistance Applications, vol. 13, pp. 134-142, 2019, doi:
https://doi.org/10.1016/j.coco.2019.04.008.
[22] A. W. Andiani, E. Budi, I. Sugihartono, “Pembentukan Lapisan Komposit Ni-TiAlN/Si3N4 menggunakan Metode Elektrodeposisi dengan Variasi Temperatur,” Prosiding Seminar Nasional Fisika (E-JOURNAL), vol. 8, pp. SNF2019-145, 2019, doi: https://doi.org/10.21009/03.SNF2019.02.PA.20.
[23] E. Budi et al., “Electrodepositing Ni-TiN/Si3N4 Composite Layer Wirh Variation of Current Density” , Engineering Materials, vol. 860, pp 320-326, 2019, doi: https://doi.org/10.4028/www.scientific.net/KEM.860.320.
[24] Nafise Parhizkar et al., “Electrochemical Deposition of Ni–TiN Nanocomposite Coatings and the Effect of Sodium Dodecyl Sulphate Surfactant on the Coating Properties,” vol. 39, no. 4, pp. 1021-1027, 2016, doi: https://doi.org/10.1007/s12034-016-1238-3.
[25] Esmar Budi et al., “Effect of Elevated Temperature on Composition and Morphology of Ni- TiN/Si3N4 Composite Coatings,” AIP Conference Proceedings, vol. 2320, no. 1, 2021, doi: https://doi.org/10.1063/5.0037553.
[26] P. Wang et al., “Novel Nitride Materials Synthesized at High Pressure,” Crystals, vol. 11, no. 6, p. 614, May 2021, doi: https://doi.org/10.3390/cryst11060614.
[27] D. Tonelli, E. Scavetta, I. Gualandi, “Electrochemical Deposition of Nanomaterials for Electrochemical Sensing,” Sensors, vol. 19, no. 5, p. 1186, 2019, doi: https://doi.org/10.3390/s19051186.