EXTRACTION AND ABSORBANCE PROPERTIES TEST OF OIL FROM SACHA INCHI SEEDS (PLUKENETIA VOLUBILIS L.)
EKSTRAKSI DAN UJI SIFAT ABSORBANSI MINYAK DARI BIJI TANAMAN SACHA INCHI (PLUKENETIA VOLUBILIS L.)
DOI:
https://doi.org/10.21009/03.1301.FA31Abstract
The seeds of the sacha inchi plant (Plukenetia volubilis L.) have been extracted using the cold pressing
method at a temperature of 45°C and a pressure of 600 bar or 60 MPa. Seeds come from sacha inchi
plants grown at an altitude of 200 and 500 masl each with an oil volume of 100 ml. Testing of
absorbance properties will be carried out using the UV-Vis spectrophotometer technique. So that the
absorbance spectrum pattern are expected to provide information on the characteristics of the substance
content possessed by the sacha inchi plant, namely lipids/fatty acids, proteins, tocopherols, phytosterols,
phenolic components, fiber, antioxidants, carbohydrates, vitamins, polyphenols, and minerals.
References
[1] Niu, L., Li, J., Chen, M. S., & Xu, Z. F. (2014). Determination of oil contents in Sacha inchi
(Plukenetia volubilis) seeds at different developmental stages by two methods: Soxhlet
extraction and time-domain nuclear magnetic resonance. Industrial Crops and Products, 56,
187–190. https://doi.org/10.1016/j.indcrop.2014.03.007.
[2] Flores, S., Flores, A., Calderón, C., & Obregón, D. (2019). Synthesis and characterization of
sacha inchi (Plukenetia volubilis L.) oil-based alkyd resin. Progress in Organic Coatings,
136(July), 105289. https://doi.org/10.1016/j.porgcoat.2019.105289.
[3] Chirinos, R., Zuloeta, G., Pedreschi, R., Mignolet, E., Larondelle, Y., & Campos, D. (2013).
Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols,
phytosterols, phenolic compounds and antioxidant capacity. Food Chemistry, 141(3), 1732–
1739. https://doi.org/10.1016/j.foodchem.2013.04.078.
[4] Nascimento, A. K. L., Melo-Silveira, R. F., Dantas-Santos, N., Fernandes, J. M., Zucolotto, S.
M., Rocha, H. A. O., & Scortecci, K. C. (2013). Antioxidant and antiproliferative activities of
leaf extracts from Plukenetia volubilis Linneo (Euphorbiaceae). Evidence-Based
Complementary and Alternative Medicine, 2013. https://doi.org/10.1155/2013/950272.
[5] Zhan, Q., Wang, Q., Liu, Q., Guo, Y., Gong, F., Hao, L., Wu, H., & Dong, Z. (2021). The
antioxidant activity of protein fractions from Sacha inchi seeds after a simulated
gastrointestinal digestion. Lwt, 145(March), 111356.
https://doi.org/10.1016/j.lwt.2021.111356.
[6] Kumar, B., Smita, K., Sánchez, E., Debut, A., & Cumbal, L. (2022). Phytosynthesis,
characterization and catalytic activity of Sacha inchi leaf-assisted gold nanoparticles. Chemical
Papers, 76(5), 2855–2864. https://doi.org/10.1007/s11696-022-02075-6.
[7] Rodzi, N. A. R. M., & Lee, L. K. (2022). Corrigendum to “Sacha Inchi (Plukenetia Volubilis
L.): recent insight on phytochemistry, pharmacology, organoleptic, safety and toxicity
perspectives” [Heliyon 8, (9), (September 2022), (2022), e10572] (Heliyon
(2022) 8(9), (S2405844022018606), (10.1016/j. Heliyon, 8(11).
https://doi.org/10.1016/j.heliyon.2022.e11436.
[8] Lu, W. C., Chiu, C. S., Chan, Y. J., Mulio, A. T., & Li, P. H. (2023). New perspectives on
different Sacha inchi seed oil extractions and its applications in the food and cosmetic
industries. Critical Reviews in Food Science and Nutrition, 0(0), 1–19.
https://doi.org/10.1080/10408398.2023.2276882
[9] Supriyanto, S., Imran, Z., Ardiansyah, R., Auliyai, B., Pratama, A., & Kadha, F. (2022). The
Effect of Cultivation Conditions on Sacha Inchi (Plukenetia volubilis L.) Seed Production and
Oil Quality (Omega 3, 6, 9). Agronomy, 12(3). https://doi.org/10.3390/agronomy12030636.
[10] Cai, Z. Q. (2011). Shade delayed flowering and decreased photosynthesis, growth and yield of
Sacha Inchi (Plukenetia volubilis) plants. Industrial Crops and Products, 34(1), 1235–1237.
https://doi.org/10.1016/j.indcrop.2011.03.021.
[11] Cárdenas, D. M., Rave, L. J. G., & Soto, J. A. (2021). Biological activity of sacha inchi
(Plukenetia volubilis linneo) and potential uses in human health: A review. Food Technology
and Biotechnology, 59(3), 253–266. https://doi.org/10.17113/ftb.59.03.21.6683.
[12] Wang, S., Zhu, F., & Kakuda, Y. (2018). Sacha inchi (Plukenetia volubilis L.): Nutritional
composition, biological activity, and uses. Food Chemistry, 265(December 2017), 316–328.
https://doi.org/10.1016/j.foodchem.2018.05.055.
[13] Kodahl, N. (2020). Sacha inchi (Plukenetia volubilis L.)—from lost crop of the Incas to part of
the solution to global challenges? Planta, 251(4), 1–22. https://doi.org/10.1007/s00425-
02003377-3.
[14] Gutiérrez, L. (2019). Effects of Dehulling Sacha Inchi ( Plukenetia volubilis L .) Seeds on the
Physicochemical and Sensory Properties of Oils Extracted by Means of Cold Pressing.
https://doi.org/10.1002/aocs.12270.
[15] Jitpinit, S., Siraworakun, C., Sookklay, Y., & Nuithitikul, K. (2022). Enhancement of omega-3
content in sacha inchi seed oil extracted with supercritical carbon dioxide in semi-continuous
process. Heliyon, 8(1). https://doi.org/10.1016/j.heliyon.2022.e08780.
[16] Follegatti-Romero, L. A., Piantino, C. R., Grimaldi, R., & Cabral, F. A. (2009). Supercritical
CO2 extraction of omega-3 rich oil from Sacha inchi (Plukenetia volubilis L.) seeds. Journal of
Supercritical Fluids, 49(3), 323–329. https://doi.org/10.1016/j.supflu.2009.03.010.
[17] Chirinos, R., Zorrilla, D., Aguilar-Galvez, A., Pedreschi, R., & Campos, D. (2016). Impact of
Roasting on Fatty Acids, Tocopherols, Phytosterols, and Phenolic Compounds Present in
Plukenetia huayllabambana Seed. Journal of Chemistry, 2016.
https://doi.org/10.1155/2016/6570935
[18] Muangrat, R. (2018). Screw press extraction of Sacha inchi seeds : Oil yield and its chemical
composition and antioxidant properties. July 2017, 1–10. https://doi.org/10.1111/jfpp.13635.
[19] Cisneros, F. H., Paredes, D., Arana, A., & Cisneros-zevallos, L. (2014). Chemical
Composition, Oxidative Stability and Antioxidant Capacity of Oil Extracted from Roasted
Seeds of Sacha-Inchi ( Plukenetia volubilis L.). https://doi.org/10.1021/jf500936j.
[19] Bocanegra Morales, N., & Galeano Garcia, P. (2023). Chemical Composition, Fatty Acid
Profile, and Optimization of the Sacha Inchi (Plukenetia volubilis L.) Seed-Roasting Process
Using Response Surface Methodology: Assessment of Oxidative Stability and Antioxidant
Activity. Foods, 12(18). https://doi.org/10.3390/foods12183405.
[20] Ramos-Escudero, F., González-Miret, M. L., Viñas-Ospino, A., & Ramos Escudero, M.
(2019). Quality, stability, carotenoids and chromatic parameters of commercial Sacha inchi oil
originating from Peruvian cultivars. Journal of Food Science and Technology, 56(11), 4901–
4910. https://doi.org/10.1007/s13197-019-03960-x.
[21] Al Juhaimi, F., & Özcan, M. M. (2018). Effect of cold press and soxhlet extraction systems on
fatty acid, tocopherol contents, and phenolic compounds of various grape seed oils. Journal of
Food Processing and Preservation, 42(1). https://doi.org/10.1111/jfpp.13417.
[22] Mohamed Ahmed, I. A., Al-Juhaimi, F. Y., Özcan, M. M., Osman, M. A., Gassem, M. A., &
Salih, H. A. A. (2019). Effects of cold-press and soxhlet extraction systems on antioxidant
activity, total phenol contents, fatty acids, and tocopherol contents of walnut kernel oils.
Journal of Oleo Science, 68(2), 167–173. https://doi.org/10.5650/jos.ess18141.
[23] Ramadan, M. F. (2020). Introduction to cold pressed oils: Green technology, bioactive
compounds, functionality, and applications. In Cold Pressed Oils: Green Technology,
Bioactive Compounds, Functionality, and Applications. Elsevier Inc.
https://doi.org/10.1016/B978-0-12818188-1.00001-3.
[24] Bakhouche, K., Dhaouadi, Z., Lahmar, S., & Hammoutène, D. (2015). TDDFT prediction of
UV– vis absorption and emission spectra of tocopherols in different media. Journal of
Molecular Modeling, 21(6), 1–13. https://doi.org/10.1007/s00894-015-2706-1.
[25] Schmid, F. (2001). Biological Macromolecules: UV‐visible Spectrophotometry. Encyclopedia
of Life Sciences, 1–4. https://doi.org/10.1038/npg.els.0003142.
[26] Casoni, D., Simion, I. M., & Sârbu, C. (2019). A comprehensive classification of edible oils
according to their radical scavenging spectral profile evaluated by advanced chemometrics.
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 213, 204–209.
https://doi.org/10.1016/j.saa.2019.01.065.
[27] Uncu, O., & Ozen, B. (2019). A comparative study of mid-infrared, UV–Visible and
fluorescence spectroscopy in combination with chemometrics for the detection of adulteration
of fresh olive oils with old olive oils. Food Control, 105, 209–218.
https://doi.org/10.1016/j.foodcont.2019.06.013.
[28] Andrian, Supriadi, & Marpaung, P. (2014). The Effect of Elevation and Slope on Rubber
(Hevea brasiliensis Muell. Arg.) Production in PTPN III Hapesong Farm of South Tapanuli.
Jurnal Online Agroteknologi , 2(3), 981–989. https://doi.org/10.32734/jaet.v2i3.7444.
[29] Nurnasari, E., & Djumali, . (2016). Pengaruh Kondisi Ketinggian Tempat Terhadap Produksi
dan Mutu Tembakau Temanggung. Buletin Tanaman Tembakau, Serat & Minyak Industri,
2(2), 45. https://doi.org/10.21082/bultas.v2n2.2010.45-59.
[30] Herlina, Aziz, S. A., Kurniawati, A., & Faridah, D. N. (2017). Pertumbuhan dan Produksi
Habbatussauda ( Nigella sativa L .) di Tiga Ketinggian di Indonesia Growth and Production of
Black Cumin ( Nigela sativa L .) at Three Altitudes in Indonesia. Jurnal, 45(3), 323–330.
[31] Rianto, S. (2007). Analisis Model Ketahanan Rumput Gajah dan Rumput Raja Pada
kekeringan BERDASARKAN RESPONS ANATOMIAKAR DAN DAUN. Jurnal Biologi
Sumatera, 2(1), 17–20.
[32] Listia, E., Pradiko, I., Syarovy, M., Hidayat, F., Ginting, E. N., & Farrasati, R. (2020).
Pengaruh Ketinggian Tempat terhadap Performa Fisiologis Tanaman Kelapa Sawit (Elaeis
Guineensis Jacq.). Jurnal Tanah Dan Iklim, 43(1), 33.