DOI: doi.org/10.21009/SPEKTRA.083.04

SYNTHESIS AND CHARACTERIZATION ANALYSIS OF FE₃O₄/SiO₂ CORE SHELL

Diva Cassia Mayora^{1,*}, Iwan Sugihartono¹, Isnaeni², Haswi Purwandanu Soewoto³, Akhmad Futukhillah Fataba Alaih⁴, Djoko Triyono⁴, Rahmat Setiawan Mohar², Tan Swee Tiam⁵

¹Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jl. Rawamangun Muka No. 01, Rawamangun 13220, Indonesia

²Center for Photonics Research. National Research and Innovation Agency (BRIN), KST B.J. Habibie, South Tangerang, Banten 15314, Indonesia

³Center for Mining Technology, National Research and Innovation Agency (BRIN), KST B.J. Habibie, South Tangerang, Banten 15314, Indonesia

⁴Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, New Campus Universitas Indonesia, Depok, West Java 16426, Indonesia

⁵School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia

*Corresponding Author Email: dcmayora@gmail.com

Received: 30 June 2023 Revised: 30 November 2023 Accepted: 7 December 2023 Online: 31 December 2023 Published: 31 December 2023

SPEKTRA: Jurnal Fisika dan Aplikasinya p-ISSN: 2541-3384 e-ISSN: 2541-3392

ABSTRACT

Fe₃O₄/SiO₂ core shell synthesis has been carried out, and its characteristics has been analyzed to be used as a photocatalyst using co-precipitation and sol-gel method. Fe₃O₄ is used as the core material to eliminate the difficulty of separating the photocatalyst powder from the solution medium, SiO₂ is used to avoid oxidation by preventing the Fe₃O₄ core from coming into direct contact with the solution. The samples were then characterized using X-Ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR), and Vibrating Sample Magnetometer (VSM). The XRD and FTIR results showed that the crystal structure and movement of the sample molecules matched the from previous standard characteristics studies. The VSM characterization results show that SiO₂ succeeded in reducing the value of the magnetization of Fe₃O₄, which proves that Fe₃O₄ has been successfully coated by SiO₂.

Keywords: core shell, stober, crystal structure, magnetization

INTRODUCTION

 Fe_3O_4 is utilized as the core material to facilitate the separation of the photocatalyst powder from the solution medium, addressing the difficulty of separation. Additionally, Fe_3O_4 nanoparticles possess magnetic, optical, and catalytic properties, making them suitable for catalytic applications [1-2]. Fe_3O_4 particles are superior particles used for catalytic removal of toxic elements from industrial waste products [3-5].

Exposed Fe₃O₄ has unstable chemical properties and easily agglomerates. Therefore, many substances such as SiO₂, TiO₂, Ag, and graphene have been used to coat Fe₃O₄ to form a core shell structure, so as to improve the stability, dispersion, and biocompatibility of Fe₃O₄ [6]. In this study, Silica (SiO₂) was used as a protective shell to prevent oxidation and to improve the stability, dispersion, and biocompatibility of Fe₃O₄ nanoparticles, which can improve the performance of Fe₃O₄ nanoparticles in the attachment of organic molecules to the nanoparticle surface [7]. However, SiO₂ coating can reduce agglomeration as well as uneven dispersion of Fe₃O₄ particles [8].

In this case, the core-shell Fe_3O_4/SiO_2 is used as a composite photocatalyst. Thus, Fe_3O_4 is used as the core material to eliminate the difficulty in separating the photocatalyst powder from the solution medium because Fe_3O_4 excels at removing toxic elements from industrial waste products [9]. In the interim, SiO_2 is used to avoid oxidation by preventing the Fe_3O_4 core from coming into direct contact with the solution. It's good at absorbing water, stays stable, and can be used by living things. After forming the Fe_3O_4/SiO_2 core shell, characterization testing was carried out on the morphology of the layer using the structure and size of crystals using X-Ray Diffraction (XRD), molecular movement using Fourier Transform Infra-Red (FTIR), and Vibrating Sample Magnetometer (VSM).

METHOD

Synthesis of Fe₃O₄

Synthesis of Fe_3O_4 was carried out using the co-precipitation method by mixing 40.55 g of 0.5 M FeCl₃ with 34.75 g of 0.25 M FeSO₄.7H₂O into 500 ml of deionized water. The solution was then stirred using a magnetic stirrer for 2 hours while 80 ml of NH₄OH was slowly added dropwise. The solution was subsequently left to precipitate overnight, washed ten times, and then calcined at 50°C for 2 hours to produce Fe₃O₄ powder.

Synthesis of Fe₃O₄/SiO₂

The synthesis of Fe_3O_4/SiO_2 was carried out using the Stober method by mixing 1 gram of Fe_3O_4 sample into a mixture of 400 ml ethanol and 100 ml deionized water. The solution was then subjected to ultrasonic vibration at 80 kHz for 15 minutes. Subsequently, the solution was mixed with 25 ml of 25% NH₃ and subjected to ultrasonic vibration at 80 kHz for 5 minutes. The solution was then dropwise added with 10 ml of TEOS while being subjected to ultrasonic vibration at 80 kHz for 2 hours. The solution was then washed and left overnight until dry to produce Fe_3O_4/SiO_2 powder.

Characterization of Fe₃O₄/SiO₂

The characterization of Fe_3O_4/SiO_2 is conducted by utilizing three distinct characterization techniques. Initially, X-Ray Diffraction (XRD) was employed to characterize the crystal structure of the sample. The results demonstrate the presence of Fe_3O_4 and SiO_2 , as well as the crystal structure of the Fe_3O_4 nucleus. Subsequently, analyze the Fourier Transform Infra-Red (FTIR) to identify functional groups present in the sample, such as Fe-O and Si-O bonds. Lastly, the characterization of the Vibrating Sample Magnetometer (VSM) to assess the magnetization of the sample, showing a reduction in magnetization of Fe_3O_4 after being coated with SiO_2 . This characterization provides insight into the crystal structure, functional groups, and magnetic properties of Fe_3O_4/SiO_2 core shell composites, confirming the successful synthesis and coating of core materials with SiO_2 .

RESULT AND DISCUSSION

FIGURE 1 shows the XRD patterns of Fe_3O_4 , Fe_3O_4/SiO_2 . Based on figure, XRD characterization results revealed distinct peaks at 20 values of 30.90° , 35.67° , 47.20° , 54.83° , and 62.84° , which correspond to the characteristic peaks of Fe_3O_4 as reported in previous studies [10]. These specific peaks are consistent with the crystallographic patterns associated with Fe_3O_4 , confirming the presence of this phase within the sample. The XRD pattern distinctly showcased a single-phase structure dominated by Fe_3O_4 , while the peaks corresponding to SiO_2 were notably absent. The absence of SiO_2 peaks can be attributed to its amorphous nature, where in the lack of a regular crystalline structure makes it indistinguishable in the XRD pattern.

FIGURE 1. Diffraction Patterns of Fe₃O₄, Fe₃O₄/SiO₂

Furthermore, the absence of discernible peaks for SiO_2 in the XRD pattern underscores its amorphous nature, as opposed to the crystalline Fe_3O_4 phase. The amorphous characteristics of SiO_2 prevent the identification of specific crystallographic orientations or phases using XRD. This observation aligns with the intrinsic properties of SiO_2 , where its lack of longrange order results in a diffuse scattering pattern rather than distinct peaks. Consequently, the comprehensive XRD characterization elucidates the predominant presence of Fe_3O_4 and the amorphous nature of SiO2 within the sample, providing valuable insights into its structural composition and phase distribution.

FIGURE 2. Graphics FTIR of (a) Fe₃O₄, (b) Fe₃O₄/SiO₂

The results of Fourier Transform Infrared (FTIR) spectroscopy testing on Fe3O4 nanoparticle samples and core-shell Fe3O4/SiO2 nanocomposites are shown in FIGURE 2. The FTIR spectra, which cover a spectral range from 400 to 4000 cm-1, provide important insights into the vibrational frequencies associated with specific functional groups that are present in the samples. It is possible to identify and characterize the distinctions in the samples by examining the matching peaks in the FTIR spectra.

Additionally, a thorough understanding of the chemical bonding and interactions inside the Fe3O4 nanoparticle samples and Fe3O4/SiO2 core-shell nanocomposites is made possible by the identification of particular functional groups using FTIR research. It is possible to determine with certainty which functional categories correspond to the observed peaks by comparing them with previous investigations and published literature [11]. The generated Fe3O4/SiO2 nanocomposites' composition and structure are validated by this comparative analysis, which also makes it easier to understand their possible uses and characteristics based on the detected functional groups.

	1		
Functional Group	Wavenumber (cm ⁻¹)	Reference Wavenumber (cm ⁻¹)	Reference
Fe-O-Fe	576	572-587	[12]
Si-O-Si	1093	1091	[13]
O-H	1637	1637	[14]

TABLE 1. Functional Group References

FIGURE 3. Magnetization Curves of (a) Fe₃O₄, (b) Fe₃O₄ /SiO₂

FIGURE 3 shows the Vibrating Sample Magnometer (VSM) of Fe_3O_4 nanoparticles and Fe_3O_4/SiO_2 nanocomposites. Based on the figure, the magnetic curves were determined to be 42.18 emu/g and 30.41 emu/g, respectively. This observed difference in magnetization values provides significant insights into the coating process of Fe_3O_4 nanoparticles with SiO₂. Specifically, the reduction in magnetization value for the Fe_3O_4/SiO_2 nanocomposites compared to pure Fe_3O_4 nanoparticles suggests an alteration in the magnetic properties, indicating the incorporation of SiO₂ onto the Fe_3O_4 surface. Furthermore, the degradation in the Fe₃O₄ magnetization value further substantiates the successful coating of Fe_3O_4 nanoparticles by SiO₂ [15].

The decrease in VSM results can be attributed to the successful coating of Fe_3O_4 with SiO₂. This reduction in magnetization indicates that the core material, Fe_3O_4 , was effectively shielded by the SiO₂ shell, confirming the formation of the core-shell structure. The SiO₂ coating prevents direct contact of Fe_3O_4 with the solution, there by reducing magnetization. This finding supports the intended purpose of SiO₂ as a protective coating for Fe_3O_4 , preventing oxidation and ensuring the stability of the core-shell structure.

CONCLUSION

Core shell Fe_3O_4/SiO_2 has been successfully synthesized by co-precipitation and Stober methods and characterized Fe_3O_4/SiO_2 core-shell nanoparticles for use as photocatalysts. The results showed that the crystal structure and movement of the sample molecules are aligned with the standard characteristics, and SiO₂ effectively reduces the magnetization of Fe₃O₄.

This confirms that SiO₂ is suitability for coating Fe₃O₄, highlighting the successful formation of core-shell structures for potential photocatalytic applications.

REFERENCES

- [1] Á. de Jesús Ruíz-Baltazar, S. Y. Reyes-López, M. de Lourdes Mondragón-Sánchez, A. I. Robles-Cortés, and R. Pérez, "Eco-friendly synthesis of Fe3O4 nanoparticles: Evaluation of their catalytic activity in methylene blue degradation by kinetic adsorption models," *Results Phys.*, vol. 12, pp. 989–995, 2019, doi: https://doi.org/10.1016/j.rinp.2018.12.037.
- [2] J. Dobson, "Magnetic Nanoparticles For Drug Delivery," *Drug Development Research*, vol. 67, no. 1, pp. 55-60, 2006.
- [3] Teng Ong *et al.*, "Photodegradation of Commercial Dye, Methylene Blue Using Immobilized TiO2," *International Conference on Chemical, Biological and Environmental Engineering*, vol. 43, no. 23, pp. 109-113, 2012.
- [4] M. S. Manojkumar, S. Mohan, C. Thangamani, and V. Shanmugam, "Removal of heavy metals by using magnetically reusable Fe3O4@ZnO nanocomposites from Andrographis paniculata leaf extract: a greener way to remove industrial effluents," *J. Iran. Chem. Soc.*, vol. 20, no. 11, pp. 2767–2779, 2023, doi: 10.1007/s13738-023-02874-y.
- [5] L. Dong *et al.*, "A review on recent advances in the applications of composite Fe3O4 magnetic nanoparticles in the food industry," *Crit. Rev. Food Sci. Nutr.*, vol. 64, no. 4, pp. 1110–1138, Feb. 2024, doi: 10.1080/10408398.2022.2113363.
- [6] Munasir *et al.*, "Phase and magnetic properties of Fe3O4/SiO2 natural materials-based using polyethylene glycol media," *IOP Conference Series: Materials Science and Engineering*, vol. 515, no. 1, p. 012017, 2019.
- [7] Zaytseva *et al.*, "Fe3O4/SiO2 Core Shell Nanostructures : Preparation and Characterization," *Russians Journal of Inorganic Chemistry*, vol. 63, no. 12, pp. 1684-1688, 2018.
- [8] Z. Zhang *et al.*, "Highly efficient piezotronic strain sensors with symmetrical Schottky contacts on the monopolar surface of ZnO nanobelts," *Nanoscale*, vol. 7, no. 5, pp. 1796-1801, 2015, https://doi.org/10.1039/c4nr05597g.
- [9] Hakan *et al.*, "Synthesis, characterization of Fe3O4@SiO2@ZnO composite with a coreshell structure and evaluation of its photocatalytic activity," *Journal of Environmental Chemical Engineering*, vol. 8, no. 5, p. 104160, 2020.
- [10] Raganata *et al.*, "Sintesis Fotokatalis Nanopartikel ZnO untuk Mendegradasi Zat Warna Methylene Blue," *Chemistry Progress*, vol. 12, no. 2, 2019.
- [11] P. K. Jal *et al.*, "Synthesis and characterization of nanosilica prepared by precipitation method," *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, vol. 240, no. 1-3, pp. 173-178, 2004.
- [12] N. A. Galedari, M. Rahmani, M. Tasbihi, "Preparation, characterization, and application of ZnO@ SiO 2 core-shell structured catalyst for photocatalytic degradation of phenol," *Environmental Science and Pollution Research*, vol. 24, pp. 12655-12663, 2017.

- [13] Munasir *et al.*, "Nanosized Fe₃O₄/SiO₂ core-shells fabricated from natural sands, magnetic properties, and their application for dye adsorption," *Engineering and Applied Science Research*, vol. 49, no. 3, pp. 340-352, 2022.
- [14] Septiyani *et al.*, "Efektivitas model inkuiri berbantuan modul dalam meningkatkan pemahaman konsep dan keterampilan generik sains," *Jurnal inovasi pendidikan kimia*, vol. 8, no. 2, 2014.
- [15] M. A. Ghasemzadeh, "Fe3O4@ SiO2-OSO3H nanocomposite as an efficient catalyst for the preparation of tricarboxamides," *Quimica Nova*, vol. 40, pp. 47-53, 2017.