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Abstract 

 
Bound state solution of Dirac Equation for trigonometric Scarf potential with a new tensor coupling under 

spin and pseudospin symmetric limits are investigated using Nikiforov-Uvarov method. The new tensor 

potential proposed is inspired by superpotential form in SUSY quantum mechanics. The Dirac equation 

with trigonometric Scarf potential coupled by new tensor potential for the pseudospin and spin symmetric 

cases reduces to Schrodinger type equation with shape invariant potential since the proposed new 

potentials are similar to the superpotential of Scarf potential. The relativistic wave functions are exactly 

obtained eigenfunction of NU method in terms of Jacobi polynomials and the relativistic energy equation 

is exactly obtained by using eigenvalue of NU method in the approximation scheme of centrifugal term. 

The new tensor potential omits the energy degeneracy both for pseudospin and spin symmetric cases. 

 
Keywords: Scarf potential, new tensor coupling potential, spin and pseudospin symmetry, Nikiforov-

Uvarof methods. 

 

1. Introduction 

 

 The exact analytical solutions of Dirac equations 

play important roles in relativistic quantum 

mechanics since they provide all important 

information of the system investigated. To describe 

the motion of spin half particles, some authors have 

explored the Dirac equations whose have exact 

solution under approximation scheme of centrifugal 

term for various potentials with tensor potentials [1-

10]. From the observation, the expression of the 

tensor coupling potentials under the approximation 

scheme of centrifugal term are similar to the 

expression of the component of the given potentials. 

 Dirac equation for central/non-central potentials 

have been solved mostly by Nikiforov-Uvarof (NU) 

method [4, 9-13],  factorization methods and SUSY 

QM [14-16], hypergeometric and confluent 

hypergeometric method [17-22], and asymptotic  

 

iteration method [23-24], Romanovski Polinomials 

[25-27], in the limit of spin and pseudospin  

 

symmetries. However, there are only few potentials 

that are solved exactly such as coulomb and 

harmonics oscillator potentials with Coulomb–type 

tensor potential, but other potentials are solvable only 

for s-wave. For l-wave, the Dirac Equations  for 

central potentials are only solved approximately due 

to the contribution of the centrifugal term. The 

approximation scheme of the centrifugal term was 

proposed by Greene and Aldrich [28] and this 

approximation works well for trigonometric, 

hyperbolic and exponential potentials. 

 The new tensor potential is proposed due to the 

inspiration of the algebraic structure of SUSY 

quantum mechanics whose super partner potential is 

composed of square of the superpotential and its 

derivative [27]. The proposed new tensor potential is 

trigonometric cotangent plus cosecant potential 

which is similar to the superpotential form of 

trigonometric Scarf potential. We have solved this 

potential using Romanovski Polinomials [27]. In this 

paper, we will solve this new tensor potential using 

another method, that is, Nikiforov-Uvarov method.  

 The new tensor coupling potential as a function of 
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trigonometric expression given as [27] 

 arVarVarU csccot)( 32   (1) 

with V2 and V3 are the strength of the nucleon forces, 

and a is the parameter that control the range of the 

tensor potential. The negative trigonometric 

cotangent potential alone is similar with the 

combination of Coulomb potential with square well 

potential therefore it is expected that combination of 

trigonometric cotangent and cosecant potential is 

suitable to be a screening potential as Coulomb-type 

and Yukawa-type tensor potentials. These tensor 

potentials were originally used to model strong 

nuleon-nucleon interactions caused by the exchange 

in nuclear physics [28-30].  

 The motion of nucleon with mass M in a repulsive 

vector potential and an attractive scalar potential  plus 

a tensor potential U(r) is described by Dirac equation 

given as [9,12,19, 23]  
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where E is the relativistic energy and p
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with σ is three dimensional Pauli matrices, I is 2×2 

identity matrix. By taking  1 , c =1 and writing 

the Dirac spinor in Eq.(2) as 
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where ( )nG r
 and ( )nF r

 are the lower  and upper 

components of Dirac spinors, respectively, 

),( l

jmY  is spin spherical harmonics, ),( l

jmY  is 

pseudospin spherical harmonics, l is orbital quantum 

number, l  is pseudo orbital quantum number, and m 

is the projection of the angular momentum on the z- 

axis. 

By inserting Eqs. (3) and (4) into Eq. (2), we get   
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and 
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By manipulating Eqs. (5) and (6) we obtain Dirac 

equations for pseudospin and spin symmetries, 

respectively, given as         
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where )()()( rVrVr SV   is the sum of scalar and 

vector potentials, and )()()( rVrVr SV   is the 

different between vector and scalar potentials. 

In the case of pseudospin symmetry, from Eq. (7) we 

have )1()1(  ll that gives  

1
2

( ) 1l j l l         and 1
2
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1
2
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2

j l   (10) 

for 0  and for 0 , respectively,   is spin orbit 

quantum number. For pseudospin symmetry the sum 

and the different between vector and scalar potentials 

are given as 

psCr  )( and )()( rVr   (11) 

where Cps is constant. Eq. (7) is Schrodinger-type 

equation with the effective potential Veff 
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is shape invariant since the effective potential in Eq. 

(12) is combination of two potentials, 

)(')(2 rrVL    and  ( )R n psV V r M E C    with 

( ) ( )r U r
r


   is similar to the superpotential of the 

trigonometric Scarf potential in the approximation 

scheme of centrifugal term. 

 For spin symmetry we have )1()1(  ll  

that leads to the values 
1 1
2 2

( 1) ( )l j j l          , for 0   (13) 

and 

1 1
2 2

( )l j j l       , for 0   (14) 

The different and the sum of vector and scalar 

potentials for spin symmetry are 

sCr  )( and )()( rVr   (15) 

Similar to the argumentation of the pseudospin 

symmetry, the Schrodinger-type equation in Eq. (8) 

has shape invariant potential with the effective 

potential Veff given as 
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 Both Dirac equations for pseudospin and spin 

symmetries in Eqs. (7) and (8) are solved using 

Nikiforov-Uvarov Method. The NU method which 

was developed by Nikiforov-Uvarov [31]. This 
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method based on solving the second order linear 

differential equations by reducing it to a 

hypergeometric type equation by a suitable change of 

variable. By using the eigenvalue of this method, we 

have the energy of the system. The wave functions 

exactly obtained using the eigenfunction of NU 

method in terms of Jacobi polynomials. 

2. Methods of Analysis 

 

 The Dirac equation of any shape invariant 

potential can be reduced into hypergeometric type 

differential equation by suitable variable 

transformation [32-35]. The hypergeometric type 

differential equation, which is solved using NU 

method, is presented as: 
2
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where ( )s  and ( )s  are polynomials at most in the 

second order, and ( )s is first order polynomial. Eq. 

(17) can be solved using separation of variable 

method which is expressed as: 
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 By inserting Eq. (18) into Eq. (17) we get 

hypergeometric type equation, that is: 
2

2
0

y y
y

s s
  
 

  
 

 (19) 

ϕ (s) is a logarithmic derivative whose solution 

obtained from condition: 
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defined as: 
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 The value of k in Eq. (21) can be found from the 

condition that the expression under the square root of 

Eq. (21) must be square of polynomial which is 

mostly first degree polynomial and therefore the 

discriminate of the quadratic expression is zero. A 

new eigenvalue of Eq. (19) is: 
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 The new bound state energy is obtained using 

Eqs. (22) and (23). To generate the bound state 

energy and the corresponding eigenfunction, the 

condition that τ'< 0 is required.  The solution of the 

second part of the wave function, yn (s), which is 

connected to Rodrigues relation [36], is given as: 

 ( ) ( ) ( )
( )

n
nn

n z

C d
y z z z

z dz
 


  (25) 

where Cn is normalization constant, and the weight 

function ρ(s) must satisfies the condition: 
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 The wave function of the system is therefore 

obtained from Eqs. (20), (25) and (26). 

3. Result and Discussion 

 

3.1.  Solution of Pseudospin Symmetry  

 

The trigonometric Scarf potential that will be coupled 

with new tensor potential is given as 
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where V0and V1a positive parameter which describe 

the depth of the potential, a is a positive parameter 

which control the range of the potential,  and 

0 r  . By inserting Eqs. (1) and (27) into Eq. 

(7),and take approximaxion for centrifugal term, 
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 By setting 
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in Eq. (28) we obtain one dimensional Schrodinger-

type equation given as 3 
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By setting cosar s in Eq. (33) we get        

 
  (34) 

 By comparing Eqs. (17), (34), and using 

eigenvalue of NU method in Eq. 23, we obtain the 

relativistic energy of Dirac Equation is: 
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 The relativistic energy spectra calculated from 

relativistic energy equation in Eq. (35) are presented 
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in Table 1. It shows that the degeneracy occurs for a pair of states (n, l, j+½) with (n, l+2, j-½). The degeneracy is 

removed by the presence of the trigonometric cotangent and cosecant tensor potential, as shown in the 5
th

 and 9
th 

columns. For 0  , the presence of the tensor potential decreases the relativistic energy while for 0   the tensor 

potential increases the relativistic energy. 

 

 

Table 1. Energy spectra for trigonometric Scarf potential with/without new tensor potential 

forV0 = 4 fm
-1

; V1 = 3 fm
-1

; a = 0.05 fm
-1

; M = 3 fm
-1

; and Cps = -5 fm
-1

. 

l n, 0  
(l, 

j = l + ½) 

0nE  

V2&V3 = 0 

0nE
 

V2 = 0.6, 

V3 = 0.8 

n, 

0  
(l+2,  

j = l - ½) 

0nE
 

V2&V3 = 0 

0nE
 

V2 = 0.6, 

V3 = 0.8 

0 0, -1 0s1/2 -1.98997 -1.99674 0, 2 0d3/2 -1.98997 -1.98058 

1 0, -2 0p3/2 -1.97773 -1.98834 0, 3 0f5/2 -1.97773 -1.96487 

2 0, -3 0d5/2 -1.96107 -1.97518 0, 4 0g7/2 -1.96107 -1.94500 

0 1, -1 1s1/2 -1.97756 -1.98768 1, 2 1d3/2 -1.97756 -1.96427 

1 1, -2 1p3/2 -1.96091 -1.97485 1, 3 1f5/2 -1.96091 -1.94457 

2 1, -3 1d5/2 -1.94022 -1.95741 1, 4 1g7/2 -1.94022 -1.92107 

  

 

By using eigenfunction of NU method in Eqs. (20), 

(25), and (26), we obtain the lower component of 

Dirac spinor for pseudospin symmetry, that is, 
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andBn is normalization constant. 

 The ground state of lower component of Dirac 

spinor for any state from Eqs. (36) to (39) is 
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 The ground state wave function of upper 

component of Dirac spinor for pseudospin symmetry 

is obtained using Eqs. (6) and (40) in the 

approximation scheme of centrifugal term given as 
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For exact pseudospin symmetry which occurs when 

0psC  , the upper spinor in Eq. (41) exist if  
nM E   

it means that there is no positive bound state energy 

for pseudospin symmetry. 

 

3.2.  Sollution of Spin Symmetry 

 

The Dirac equation for spin symmetry is obtained by 

inserting Eqs. (1) and (27) into Eq. (8) given as 
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ar ar

M E M E C F r





 

  

   
    

 

  

 
    

 

   

 (42) 

 Using the approximation of the centrifugal term, 

 

2

2 2

1

sin

a

r ar


[28], into Eq. (42) we get  

 

   

2 2 22
3 3 2 2 0

2 2

2

2 2 3 3 1

2

2 2

2

( 1) 2
( )

sin

(2 2 )cos
( )

sin

( )

s

n

s
n

n n s n

a V V V V Vd
F r

dr ar

a V V V V V ar
F r

ar

M E M E C a V F r





  

   

 

       
 

  

  


    

 (43) 

 By setting 

 2 2

3 3 2 2 0( 1) 2s sA V V V V V           (44) 

3 2 2 3 1( 2 2 )s sB V V V V V      (45) 

   2

22
'

n n s

s

M E M E C
E V

a

    
  
 

 (46) 

 s n sM E C     (47) 

in Eq. (43) then Eq. (43) reduces to one dimensional 

Schrodinger-type equation given as 
2 22

2 '

2 2 2

cos
( ) ( )

sin sin

s s
n s n

a A a B ard
F r a E F r

dr ar ar
 

 
   

 

 (48) 

 Eq. (48) are basically similar with Eq (33). 

Therefore, the relativistic energy and the wave 

functions for spin symmetry, both for upper and 

lower component of Diracspinors, is similar to the 

pseudospin symmetry limit. The only different is the 

values of A, B, and C. The ground state wave 
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function of upper component of Dirac spinor for 

exact spin symmetry occurs when 0,sC   the lower 

spinor exist if  
nM E    therefore the system has no 

negative bound state relativistic energies.  

4. Concluding Remark 
 

 The Dirac equation for trigonometric Scarf 

potential with trigonometric cotangent and cosecant 

tensor potential in the approximation scheme of 

centrifugal term is exactly solved using NUmethod 

both for pseudospin and spin symmetric cases. It was 

found to agree with previous works [27]. The 

trigonometric cotangent and cosecant tensor potential 

removes the degeneracy energies both for pseudospin 

and spin symmetries. The lower and upper 

component of Dirac spinors are obtained exactly in 

the approximation scheme of centrifugal term both 

for pseudospin and spin symmetries.  
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