SINTESIS NANOPARTIKEL ZINC FERRITE (ZnFe2O4) DENGAN METODE KOPRESIPITASI DAN KARAKTERISASI SIFAT KEMAGNETANNYA

La Ode Asmin^{1*}), Mutmainnah², Edi Suharyadi³

¹Jurusan Fisika, FMIPA, Universitas Gadjah Mada, Bulaksumur BLS 21, Yogyakarta 5528
²Jurusan Fisika, FMIPA, Universitas Gadjah Mada, Bulaksumur BLS 21, Yogyakarta 5528
³Jurusan Fisika, FMIPA, Universitas Gadjah Mada, Bulaksumur BLS 21, Yogyakarta 5528

*) Email: fisikakuanta@gmail.com

Abstrak

Nanopartikel Zinc Ferrite (ZnFe₂O₄) telah disintesis dengan metode kopresipitasi. Nanopartikel disintesis dengan variasi konsentrasi NaOH 1,5 M; 3 M; dan 6 M dan suhu sintesis pada suhu ruang, 60°C, dan 90°C. Karakterisasi struktur kristal dan morfologi sampel menggunakan X-ray Diffraction (XRD) dan Transmission Electron Microscopy (TEM) menunjukkan bahwa sampel merupakan fasa ZnFe₂O₄ berstruktur spinel campuran normal dan invers. Ukuran partikel dihitung dengan menggunakan persamaan Scherrer diperoleh bahwa ukuran partikel menurun dengan peningkatan konsentrasi NaOH dan menurunnya suhu sintesis. Ukuran partikel sampel dengan variasi konsentrasi NaOH yaitu 1,5 M; 3 M; dan 6 M berturut-turut adalah 8,4; 7,3 dan 5,6 sedangkan dengan variasi suhu sintesis yaitu pada suhu ruang, 60°C dan 90°C berturut-turut adalah 8,1; 8,4 dan 9,2 nm. Karakterisasi sifat magnetik menggunakan Vibrating Sample Magnetometer (VSM) menunjukkan bahwa sampel dengan variasi konsentrasi NaOH memiliki koersivitas meningkat dengan menurunnya ukuran partikel. Sementara sampel dengan variasi suhu, semakin tinggi ukuran partikel, koersivitasnya cenderung meningkat. Pada 15 kOe, ukuiran partikel 5,6 nm dengan rasio fasa α-Fe2O3 terendah memiliki nilai magnetisasi tertinggi yaitu 16,510 emu/g dan koersivitas tertinggi yaitu 47,06 Oe. Dari hasil penelitian ini disimpulkan bahwa ukuran partikel dan kehadiran fasa α-Fe₂O₃ mempengaruhi sifat kemagnetan nanopartikel ZnFe₂O₄.

Kata kunci: nanopartikel, zink ferit (ZnFe₂O₄), kopresipitasi.

Abstract

Zinc Ferrite Nanoparticles (ZnFe₂O₄) have been synthesized by co-precipitation method. The nanoparticles were synthesized with various concentration of NaOH 1,5 M; 3 M and 6 M and synthesis temperature at room temperature, 60°C and 90°C. The characterization of the crystal structure and morphology of samples by using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) showed that the samples were phase ZnFe₂O₄ with mixture of normal and inverse spinel structures. The particle size estimated using the Scherrer formula were found that the particle size decrease with increasing of NaOH concentrations and decreasing of synthesis temperature. The particle size samples with various concentration of NaOH of 1.5; 3 and 6 M are 8.4; 7.3 and 5.6 nm respectively, whereas with various synthesis temperature of room temperature, 60 and 90°C are 8.1; 8.4 and 9.2 nm, respectively. Characterization of magnetic properties by using Vibrating Sample Magnetometer (VSM) showed that the samples with various concentration of NaOH has a coercivity increases with decreasing particle size. Meanwhile for several of synthesis temperature, the increasing of particle size, than the coercivity tends to increase. At 15 kOe, the particle of size 5.6 nm with the lowest phase ratio of α -Fe₂O₃ has the highest magnetization of 16.510 emu/g and the highest coercivity of 47.06 Oe. Based on the results it can be concluded that the particle size and the appearance of α-Fe₂O₃ influence the magnetic properties of ZnFe₂O₄ nanoparticle.

Keywords: nanoparticles, zinc ferrite (ZnFe₂O₄), co-precipitation.

1. Pendahuluan

Spinel ferit digunakan dalam banyak aplikasi diantaranya sebagai *drug delivery*, sensor biomolekuler, dalam proses pemisahan biomolekul dan purifikasi dan terapi hipertermia [1]. Spinel ferit memiliki rumus struktur MFe₂O₄ (M adalah ion logam dari unsur transisi 3d seperti Mn, Ni, Cu, Co,

Zn, Mg, Fe) dengan struktur kristal kubik spinel [2]. Diantara banyak spinel ferit, studi mengenai nanopartikel *zinc ferrite* (ZnFe₂O₄) merupakan salah satu riset yang banyak diminati. Hal tersebut dikarenakan sifat kimia dan stabilitas termalnya yang unik, serta ketergantungan sifat magnetiknya pada ukuran partikel [3]. *Bulk* ZnFe₂O₄ memiliki struktur spinel normal dengan ion-ion Zn²⁺ dan Fe³⁺ masingmasing menempati site tetrahedral dan oktahedral, dan bersifat antiferomagnetik pada temperatur Neel 10,5 K dan paramagnetik pada temperatur tinggi. Goldman, 2006 [4] menyatakan bahwa ukuran kristal dan metode sintesis mempengaruhi sifat magnetik nanokristalin ZnFe₂O₄. Redistribusi kation Zn²⁺ dalam site oktahedral menyebabkan ZnFe2O4 bersifat feromagnetik. Selain itu, nanopartikel ZnFe₂O₄ juga berpotensi memiliki sifat superparamagnetik [5]. Nanopartikel ZnFe₂O₄ berpotensi untuk diaplikasikan sebagai fotokatalis [6], MRI [7], terapi kanker [8], sensor gas [9], dan aplikasi lainya. Wan, dkk [7] menyatakan bahwa nanopartikel ZnFe2O4 berpotensi untuk diaplikasikan dalam bidang klinik apabila memiliki distribusi ukuran yang sempit dan sifat superparamagnetik pada suhu kamar. Yokoyama, dkk [10] menemukan bahwa magnetisasi dan temperatur Curie nanopartikel ZnFe₂O₄ meningkat dengan menurunya ukuran partikel. Dengan demikian, kajian penelitian tentang pengontrolan ukuran dan sifat kemagnetan nanopartikel ZnFe₂O₄ sangat dibutuhkan.

Berbagai metode yang digunakan untuk mensintesis nanopartikel magnetik, diantaranya, dekomposisi termal, mikroemulsi, kopresipitasi [11], *sol gel*, hidrotermal, dan sonokimia [12]. Diantara metode tersebut, metode kopresipitasi merupakan metode yang cukup efektif dan dapat bekerja pada suhu rendah. Selain itu, karena dapat mengontrol ukuran butir, metode kopresipitasi dapat digunakan untuk mengevaluasi ketergantungan sifat magnetik terhadap ukuran nanopartikel [13].

Dalam metode kopresipitasi, perbedaan suhu dapat dijadikan parameter untuk mengontrol ukuran nanopartikel. Shahraki, dkk [5] melaporkan bahwa ukuran nanopartikel ZnFe₂O₄ meningkat seiring dengan peningkatan suhu pengendapan.

Pada penelitian ini akan fokus pada kajian ketergantungan ukuran butir nanopartikel terhadap variasi konsentrasi NaOH dan suhu sintesis. Kristalinitas dan sifat kemagnetan dari sampel juga akan dikaji. Dengan demikian, diharapkan hasil penelitian ini dapat diperoleh informasi dalam upaya pengontrolan ukuran nanopartikel ZnFe₂O₄ untuk memperoleh sifat yang efektif dalam pemanfaatannya.

2. Metode Penelitian

Bahan utama sintesis nanopartikel ZnFe2O4 ini adalah ZnSO₄.7H₂O sebagai penyedia ion Zn²⁺ dan FeCl₃.6H₂O sebagai penyedia ion Fe³⁺ dengan perbandingan molar 1:2. Sintesis dilakukan dengan metode kopresipitasi yaitu dengan mencampurkan 1,150 gram ZnSO₄.7H₂O; 2,162 gram FeCl₃.6H₂O dan 3,37 mL HCl (37%) di dalam 20 mL aquades hingga homogen. Selanjutnya, masukkan campuran larutan tersebut tetes demi tetes ke dalam 50 mL larutan NaOH secara perlahan sambil diaduk menggunakan magnetic stirrer dengan kecepatan 1000 rpm selama 60 menit dengan variasi konsentrasi NaOH yaitu 1,5 M, 3 M, dan 6 M (Tabel 1). Sementara untuk sampel dengan variasi suhu dilakukan dengan cara yang sama dengan konsentrasi NaOH 1,5 M dengan variasi suhu sintesis yaitu suhu ruang, 60, dan 90°C (Tabel 2).

Selanjutnya, larutan yang terbentuk ditempatkan dalam gelas beker di atas magnet permanen untuk mempercepat pengendapan. Kemudian cuci dengan aquades kurang lebih 6 kali pengulangan untuk meminimalisir garam terlarut yang masih tertinggal. Endapan hasil pencucian kemudian dipanaskan dalam *furnace* sampai kering pada suhu sekitar 90°C untuk mendapatkan sampel ZnFe₂O₄ dalam bentuk serbuk. Selanjutnya dikarakterisasi dengan *X-ray Diffraction* (XRD) (Shimadzu model XD-3H) menggunakan radiasi monokromatik CuK α (panjang gelombang, $\lambda =$ 1,5406 Å). Ukuran butir kristal sampel dihitung dengan mengambil pelebaran puncak (311) dengan menggunakan persamaan *Scherrer*,

$$t = \frac{k\lambda}{D\cos\theta},\tag{1}$$

dengan t adalah ukuran butir kristal, k adalah konstanta Scherrer (0,9), λ adalah panjang gelombang sinar-X (dalam Å), D adalah lebar setengah puncak (dalam radian), dan θ adalah sudut difraksi Bragg (dalam radian). Hasil perhitungan akan dikonfirmasi dengan pengamatan Transmission Electron Microscopy (TEM) (Jeol TEM 1400). Karakaterisasi sifat kemagnetan dengan Vibrating Sample Magnetometer (VSM) (Riken Denshi Co.Ltd).

Tabel 1. Parameter sintesis nanopartikel ZnFe₂O₄ dengan variasi konsentrasi NaOH.

No	Nama	ZnSO ₄ .	FeCl3.	HCl	NaOH	Durasi pengadukan	Suhu sintesis
	sampel	7H ₂ O (g)	6H2O (g)	(mL)	(M)	(menit)	(°C)
1.	K.1,5M	1,149	2,162	3,37	1,5	60	60
2.	K.3M	1,149	2,162	3,37	3	60	60
3.	K.6M	1,149	2,162	3,37	6	60	60

Tabel 2. Parameter sintesis nanopartikel ZnFe₂O₄ dengan variasi suhu sintesis.

No	Nama sampel	ZnSO ₄ . 7H ₂ O (g)	FeCl ₃ . 6H ₂ O (g)	HCl (mL)	NaOH (M)	Durasi pengadukan (menit)	Suhu sintesis (°C)
1.	S.RT	1,149	2,162	3,37	1,5	60	RT
2.	S.60	1,149	2,162	3,37	1,5	60	60
3.	S.90	1,149	2,162	3,37	1,5	60	90

3. Hasil dan Pembahasan

Gambar 1 dan Gambar 2 menunjukkan pola difraksi sinar-X dari sampel yang disintesis dengan variasi konsentrasi NaOH yaitu 1,5 M (K.1,5M), 3 M (K.3M), dan 6 M (K.6M) dan variasi suhu sintesis dari suhu ruang (S.RT), 60°C (S.60), dan 90°C (S.90). Hasil karakterisasi XRD nanopartikel ZnFe₂O₄ dari puncak yang terekam dari 25° hingga 75° memperlihatkan bahwa sampel yang telah disintesa memiliki struktur kubik spinel. Hal ini dapat di lihat dengan jelas pada puncak-puncak difraksi utama dari sampel yaitu pada sudut 2θ sekitar 35° , dimana berhubungan dengan bidang (311). Puncak-puncak lain dengan intensitas yang lebih rendah yang secara berturut-turut berkaitan dengan bidang (220), (400), (511), dan (440) juga teramati pada sampel ZnFe₂O₄ yang disintesa pada penelitian ini.

Gambar 1. Pola XRD nanopartikel ZnFe₂O₄ dengan variasi konsentrasi NaOH

Gambar 2. Pola XRD nanopartikel ZnFe₂O₄ dengan variasi suhu sintesis.

Hasil analisa parameter kisi (a) dan ukuran partikel (t) sampel nanopartikel ZnFe₂O₄ hasil sintesis

dengan variasi konsentrasi NaOH dan suhu sintesis ditunjukkan pada Tabel 3 dan 4.

Tabel 3. Parameter kisi (a) dan ukuran butir (t) sampel dengan variasi konsentrasi NaOH

No	Sampel	Konsentrasi NaOH (M)	a (Å)	t (nm)
1.	K.1,5M	1,5	8,466	8,4
2.	K.3M	3	8,476	7,3
3.	K.6M	6	8,513	5,6

Tabel 4. Parameter kisi (a) dan ukuran butir (t) sampel dengan variasi suhu sintesis

No	Sampel	Suhu sintesis (°C)	a (Å)	t (nm)
1.	S.RT	RT	8,443	8,1
2.	S.60	60	8,469	8,4
3.	S.90	90	8,446	9,2

Nilai parameter kisi meningkat dengan penambahan konsentrasi NaOH. Nilai parameter kisi sampel nanopartikel hasil sintesis diperoleh lebih besar dari nilai parameter kisi bulk ZnFe₂O₄ yaitu 8,441 Å (JCPDS No. 22-1012). Hal ini mengindikasikan bahwa sampel nanopartikel ZnFe₂O₄ merupakan campuran dari struktur spinel normal dan invers. Fenomena peningkatan nilai parameter kisi ini dapat dihubungkan dengan adanya distribusi kation Zn^{2+} dan Fe³⁺ dalam site interstitial. Substitusi beberapa kation Zn²⁺ dengan radius ionik Zn²⁺ yaitu 0,74 Å, lebih besar dari radius ionik Fe³⁺ yaitu 0,64 Å, mengakibatkan ekspansi pada kisi spinel sehingga parameter kisi yang dihasilkan akan semakin meningkat.

Namun demikian, pada sampel yang disintesis pada suhu 20°C diperoleh nilai parameter kisinya paling kecil. Hasil ini juga didapatkan oleh peneliti sebelumnya, Shahraki dkk, 2012 yang menunjukkan bahwa nilai parameter kisi menurun pada suhu sintesis lebih besar dari 60°C dan pada suhu 20°C nilai parameter kisinya tereduksi. Hal ini disebabkan karena pada suhu *room temperature* (RT), proses distribusi kation berlangsung lambat.

Pada Tabel 3 menunjukkan bahwa ukuran partikel nanopartikel ZnFe₂O₄ hasil sintesis menurun dengan bertambahnya konsentrasi NaOH. Naiknya konsentrasi NaOH menyebabkan laju pengendapan (deposisi) konfigurasi ion lebih tinggi dari laju larut (disolusi) sehingga terjadi tahap nukleasi. Tahap nukleasi tersebut lebih dominan daripada pertumbuhan kristal, sehingga ukuran partikel yang dihasilkan berukuran kecil. Selain itu, menurunnya ukuran partikel dengan peningkatan konsentrasi NaOH menunjukkan bahwa basa NaOH merupakan zat pemecah (pengurai) yang baik.

Pada Tabel 4 terlihat bahwa ukuran partikel nanopartikel ZnFe₂O₄ hasil sintesis meningkat seiring dengan meningkatnya suhu sintesis. Hal ini terjadi karena dengan meningkatnya suhu maka akan

mengakibatkan aktivitas penumbuhan partikel nanopartikel meningkat sebagai akibat dari pengaruh termal selama proses sintesis. Dengan demikian semakin tinggi suhu sintesis, ukuran partikel bahan tersebut semakin membesar, dikarenakan terjadinya proses pertumbuhan fasa lebih lanjut, sehingga terjadi penggabungan antar partikel dan partikel berkembang menjadi besar.

Selain memiliki fasa ZnFe₂O₄, pola difraksi sampel juga menunjukkan adanya puncak lain yang berkaitan dengan impuritas. Puncak ini merupakan karakter dari fasa α -Fe₂O₃ (*hematite*) yang bersifat antiferomagnetik.

Gambar 3 menunjukkan hasil pengamatan TEM. Gambar 3(a) merupakan morfologi nanopartikel ZnFe₂O₄ sampel K.1,5M dengan ukuran diameter rata-rata 8,0 nm dengan distribusi ukuran partikel di bawah 11 nm. Hasil ini cukup konsisten dengan hasil perhitungan menggunakan persamaan *Scherrer* untuk analisa XRD yaitu 8,4 nm. Pada Gambar 3(b) merupakan pola cincin difraksi yang menunjukkan bidang (220), (311), (400), (511), dan (440). Hasil ini menguatkan hasil analisa XRD pada sampel K.1,5M.

Gambar 3. Hasil uji TEM (a) morfologi (b) pola cincin difraksi sampel K.1,5M

Gambar 4 merupakan kurva histeresis nanopartikel ZnFe₂O₄ yang disintesis dengan variasi konsentrasi NaOH dan variasi suhu sintesis. Dari pengamatan VSM menunjukkan bahwa nilai koersivitas nanopartikel relatif lebih kecil. Lebih rinci, kurva histeresis diperbesar (inset) dan diperoleh nilai koersivitas seperti pada Tabel 5 dan 6.

Pada sampel dengan variasi konsentrasi NaOH diperoleh bahwa nilai koersivitas dan magnetisasi meningkat seiring dengan semakin kecilnya ukuran partikel seperti pada tabel 5.

Nilai koersivitas meningkat dengan menurunnya ukuran partikel mengindikasikan bahwa sampel berada pada daerah *multidomain*. Pada partikel yang *multidomain* memiliki kecenderungan arah orientasi momen magnetnya bersifat acak. Semakin kecil ukuran partikel maka semakin banyak momen magnet yang terorientasi secara acak. Hal ini menyebabkan interkasi antar partikel dan energi anisotropinya akan semakin besar sehingga untuk didemagnetisasi membutuhkan medan eksternal yang lebih besar. Dengan demikian nilai koersivitas akan semakin meningkat.

Gambar 4. Kurva histeresis pengamatan VSM untuk sampel (a) K.1,5M; (b) K.3M; (c) K.6M; (d) S.RT; (e) S.60 dan (f) S.90

Tabel5.Magnetisasipada15kOe(M)dankoersivitas(Hc)sampel variasikonsentrasiNaOH

No	Sampel	t (nm)	Rasio α-Fe2O3 (%)	M (emu/g)	Hc (Oe)
1.	K.1,5M	8,4	4,377	4,057	42,50
2.	K.3M	7,3	8,091	4,397	43,33
3.	K.6M	5,6	3,766	16,510	47,06

Tabel6.Magnetisasipada15kOe(M)dankoersivitas(Hc)sampel variasisuhusintesis

No	Sampel	t (nm)	Rasio α-Fe2O3 (%)	M (emu/g)	Hc (Oe)
1.	S.RT	8,1	8,309	3,437	44,78
2.	S.60	8,4	4,377	4,057	42,50
3.	S.90	9,2	9,237	3,938	46,57

Dari Tabel 6 terlihat bahwa nilai koersivitas tertinggi diperoleh pada sampel S.90 yaitu 46,57 Oe dengan ukuran partikel paling besar yaitu 9,2 nm. Pada keadaan ini diasumsikan bahwa nanopartikel berada pada daerah *single domain* yang mana nilai koersivitas meningkat dengan ukuran partikel yang semakin besar. Ukuran partikel yang besar memiliki energi anisotropi (E_A) yang besar yang mana dapat dikaitkan dengan teori Stoner-Wohlfarth untuk kasus

partikel *single domain* yaitu $E_A = KV$, dengan V adalah volume partikel, K adalah *magnetocrystalline anisotropy* [14]. Teori tersebut menunjukkan bahwa ukuran partikel yang lebih besar maka volume partikel akan lebih besar dan energi anisotropi meningkat. Pada keadaan tersebut momen magnet nanopartikel ZnFe₂O₄ akan sulit untuk termagnetisasi oleh medan eksternal dan ketika didemagnetisasi maka nilai koersivitasnya cenderung lebih besar.

Barvariasinya nilai magnetisasi disebabkan oleh beberapa faktor, yaitu ukuran partikel, derajat kristalinitas serta kehadiran fasa α -Fe₂O₃. Dalam penelitian ini, nilai magnetisasi dapat dihubungkan dengan rasio fasa α -Fe₂O₃. Untuk sampel variasi konsentrasi NaOH, sampel K.6M memiliki rasio fasa α -Fe₂O₃ paling kecil dengan nilai magnetisasi 16,510 emu/g pada 15 kOe (lihat Tabel 5). Sementara pada sampel dengan variasi suhu, sampel S.60 dengan rasio fasa α -Fe₂O₃ paling kecil memiliki nilai magnetisasi paling tinggi yaitu 4,057 emu/g (lihat Tabel 6). Dari hasil ini dapat dikatakan bahwa kehadiran fasa α -Fe₂O₃ dapat mereduksi magnetisasi ZnFe₂O₄.

4. Kesimpulan

Nanopartikel ZnFe₂O₄ telah berhasil disintesis dengan metode kopresipitasi pada variasi konsentrasi NaOH dan suhu sintesis. Hasilnya menunjukkan bahwa sampel merupakan fasa ZnFe2O4 dengan struktur campuran spinel normal dan invers. Selain ukuran butir menurun seiring dengan itu. meningkatnya konsentrasi NaOH dan meningkat dengan kenaikan suhu sintesis. Analisa sifat kemagnetan menunjukkan bahwa nilai koersivitas meningkat dengan menurunnya ukuran butir dan cenderung meningkat dengan semakin besarnya ukuran butir, masing-masing untuk sampel dengan variasi konsentrasi NaOH dan suhu sintesis. Pada pengamatan magnetisasi menunjukkan nilai magnetisasi semakin tinggi dengan semakin kecilnya rasio fasa α-Fe₂O₃ dan nanopartikel ZnFe₂O₄ yang disintesis dengan konsentrasi 6 M NaOH pada suhu 60 °C bersifat feromagnetik dengan nilai magnetisasi maksimum 16,510 emu/g pada 15 kOe.

Ucapan Terimakasih

Terima kasih kepada:

- Nano-Fabrication Consortium of Nagoya University, Ministry of Education, Culture, Sports, Science and Technology (MEXT) Nano-Project Platform, Japan, 2012 – 2017.
- 2. Hibah Kompetensi (Hikom) Dikti,Kementrian Pendidikan Nasional, 2015 2016.

Daftar Acuan

[1] B. Nakhjavan, Designer synthesis of monodisperse heterodimer and ferrite

nanoparticles, Dissertation, Johannes Gutenberg-Universität in Mainz (2011), p. 4

- [2] Haefeli U, Schuett W, Teller J, Zborowski M. *Scientific and clinical applications of magnetic carriers*, Plenum: New York (1997).
- [3] Buschow, KHJ. Concise Encyclopedia of Magnetic and Superconducting Materials, Elsevier Science (2005).
- [4] Goldman A. *Modern Ferrite Technology*, Springer Verlag (2006), p. 169.
- [5] R. R. Shahraki, M. Ebrahimi, S. A. S. Ebrahimi dan S.M. Masoudpanah, Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by coprecipitation method, Journal of Magnetism and Magnetic Materials. 324 (2012), p. 3762-3765.
- [6] G. Fan, Z. Gu, L. Yang, and P. Li, Nanocrystalline zinc ferrite photocatalyst formed using the colloid mill and hydrothermal technique, Chem. Eng. J. 155 (2009), p. 534-541.
- [7] J. Wan, X. Jiang, H. Li, and K. Chen, Facile synthesis of zinc ferrite nanoparticles as nonlanthanidaT1 MRI contrast agents, Journal of Material Chemistry. 22 (2012), p. 13500-13505.
- [8] A. Meidanchi, O. Akhavan, S. Khoei, A. A. Shokri, Z. Hajikarimi, and N. Khansari, ZnFe₂O₄ nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells, Material Science and Engineering C. 46 (2014), p. 394-399.
- [9] X. Niu, and W. Du, Preparation and gas sensing properties of ZnM₂O₄ (M = Fe, Co, Cr), Sens. Actuators B, Chem. 99 (2004), p. 405-409.
- [10] M. Yokoyama, E. Ohta, T. Sato, T. Komaba and T. Sato, Size dependent magnetic properties of zinc ferrite fine particles, J. Phys IV France. 7 (1997), p. 521-522.
- [11] A. H. Lu, E. L. Salabas and F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed. 46 (2007), p. 1222-1244.
- [12] P. Tartaj, M. P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, and C. Serna, The preparation of magnetic nanoparticles for applications in biomedicine, J. Phys. D: Appl. Phys. 36 (2003), p. 183-197.
- [13] Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, and G. Zou, The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe₂O₄ nanoparticles, Materials Letters. 60 (2006), p. 3548–3552.
- [14] C. Vázquez-Vázquez., M.A. López-Quintela., M.C. Buján-Núñez., dan J. Rivas, Finite size and surface effects on the magnetic properties of cobalt ferrite nanoparticles, J Nanopart Res 13 (2011), p.1663–1676.