Perbandingan Algoritma Naive Bayes dan Support Vector Machine dalam Seleksi Kelulusan Pemberkasan Beasiswa BPP-PPA Fakultas Teknik Universitas Negeri Jakarta

Authors

  • Fakhriyani Universitas Negeri Jakarta
  • Widodo Universitas Negeri Jakarta
  • Bambang Prasetya Adhi Universitas Negeri Jakarta

DOI:

https://doi.org/10.21009/pinter.2.2.4

Keywords:

Data Mining, Beasiswa, Akurasi, Naïve Bayes, Support Vector Machine

Abstract

Beasiswa merupakan salah satu program untuk membantu meringankan mahasiswa dalam membayar uang kuliah, namun sering terjadi kesalahan dalam pemberian beasiswa tersebut karena masih dilakukan secara manual dan tidak adanya kriteria yang jelas bagaimana seorang mahasiswa dapat memperoleh beasiswa. Untuk mengantisipasi agar tidak terjadinya kesalahan dalam pemberian beasiswa maka dibutuhkan sebuah Sistem Pendukung Keputusan, namun sebelum dilakukan pembuatan sistem tersebut dirasa perlu untuk mengetahui algoritma terbaik untuk menyeleksi berkas beasiswa tersebut. Penelitian ini menggunakan dua
algoritma Data Mining yaitu algoritma Naïve Bayes dan Support Vector Machine. Naïve Bayes merupakan metode pengklasifikasian yang dapat digunakan untuk memprediksi probabilitas keanggotaan suatu class berdasarkan pengalaman di masa sebelumnya dengan kondisi antar atribut saling bebas. Support Vector Machine adalah sebuah metode prediksi dalam klasifikasi yang dapat dilakukan pada kasus yang secara linier dapat dipisahkan, maupun non-linier dengan menggunakan konsep kernel pada ruang kerja berdimensi tinggi.
Data mahasiswa yang lulus dan tidak lulus seleksi berkas beasiswa BPP-PPA akan diolah menggunakan algoritma Naïve Bayes dan Support Vector Machine. Setelah diklasifikasi kedua algoritma tersebut akan dihitung hasil akurasinya menggunakan K-fold Cross Validation. Berdasarkan hasil contoh kasus seleksi menunjukan bahwa hasil perhitungan akurasi algoritma Naïve Bayes adalah 0.7542, sedangkan hasil akurasi algoritma Support Vector Machine adalah 0.99. Kedua sistem telah mampu menangani proses penyeleksian
kelulusan pemberkasan beasiswa BPP-PPA Fakultas Teknik Universitas Negeri Jakarta. Algoritma Support Vector Machine menghasilkan rata-rata akurasi 0.99 yang mendekati 1, maka algoritma tersebut dinilai lebih akurat dan direkomendasikan untuk penelitian selanjutnya.

Downloads

Published

2018-12-01