Development of Teaching Performance Evaluation Application for Lecturers Using K-Nearest Neighbor Method with Manhattan Distance Approach
DOI:
https://doi.org/10.21009/jtp.v26i1.44443Keywords:
Evaluation, Assessment of Lecturer Performance, K-Nearest Neighbor, Manhattan DistanceAbstract
Based on the initial observation, there are several underlying issues that form the basis of this research. The teaching performance evaluation at Padang State University has limitations regarding the courses to be evaluated. Each student can only evaluate 5 (five) courses per semester, where these five courses are randomly selected by the system, allowing each student to evaluate different courses even in the same class. The evaluation of teaching performance at Padang State University is not specific to individual lecturers but to the courses. One course can be taught by several lecturers, so students evaluating the learning cannot provide assessments for each lecturer. This results in each lecturer not having their own performance results. Furthermore, the teaching performance evaluation at Padang State University does not have a classification for the filled evaluations, thus requiring a long time to calculate the final results. This study uses the Research and Development (R&D) method with the 4-D development model consisting of four stages: definition, design, development, and dissemination. The type of data used is primary data obtained from 3 media validators, the evaluation administration of Padang State University, and 46 students. The data analysis technique used is descriptive data analysis to describe the validity and practicality of the developed lecturer performance evaluation application. The results of this development study produced a lecturer performance evaluation with 202 training data, 47 test data, resulting in an accurate system with a precision value of 88.76%, a recall value of 89.93%, and a program accuracy value of 94.04%. The validity results of the web-based learning evaluation conducted by media experts obtained a score of 0.864 with a valid category. The practicality value of using web-based lecturer performance evaluation by students obtained a score of 87.42 with a practical category. Meanwhile, the practicality value obtained by the evaluation administration of Padang State University is 89.33 with a practical category.
References
Ari Saktiono, M. (2019). Penerapan Google Form Untuk Evaluasi Kehadiran Perkuliahan Taruna-Taruni Teknika PDP UHT. Jurnal Aplikasi Pelayaran Dan Kepelabuhanan, 9(2), 113. https://doi.org/10.30649/jurapk.v9i2.70
Aripin, I. (2019). Penggunaan Peta Konsep Dengan Aplikasi Cmap Tools Sebagai Alat Evaluasi Pada Perkuliahan Biologi Umum. Prosiding Seminar Nasional Pendidikan, 1, 856–868. https://prosiding.unma.ac.id/index.php/semnasfkip/article/view/121
Asmawi, Syafei, & Yamin, M. (2019). Pendidikan Berbasis Teknologi Informasi dan Komunikasi. Prosiding Seminar Nasional Pendidikan Program Pascasarjana Universitas PGRI Palembang, 50–55.
Azis, A., Pamungkas, D. P., & Setiawan, A. B. (2021). Analisa Perbandingan Algoritma Euclidean Dan Manhattan Distance. Seminar Nasional Inovasi Teknologi, 219–224.
Dewi, N. L. P. P., Purnama, I. N., & Utami, N. W. (2022). Penerapan Data Mining Untuk Clustering Penilaian Kinerja Dosen Menggunakan Algoritma K-Means (Studi Kasus: STMIK Primakara). Jurnal Ilmiah Teknologi Informasi Asia, 16(2), 105. https://doi.org/10.32815/jitika.v16i2.761
Eliyarti, E., & Rahayu, C. (2019). Tinjauan Motivasi Berprestasi Mahasiswa Teknik Dalam Perkuliahan Kimia Dasar. Jurnal Pendidikan Glasser, 3(2), 196–204.
Eliyarti, Rahayu, C., & Zakirman. (2020). Tinjauan Konstribusi Google Classroom dalam Mendukung Perkuliahan Kimia Dasar. Jurnal Pendidikan Kimia Indonesiia, 4(1), 32–39.
Fauziningrum, E., & Suryaningsih, E. I. (2021). Evaluasi Dan Prediksi Penguasaan Bahasa Inggris Maritim Menggunakan Metode Decision Tree Dan Confusion Matrix (Studi Kasus Di Universitas Maritim Amni). Angewandte Chemie International Edition, 6(11), 951–952., 5–24.
Gaja, R. N. H., & Hendrik, B. (2023). Blueprint Design Sistem Informasi Monitoring Pelanggaran Siswa di MAN 1 Padangsidimpuan. Jurnal Teknik Informatika, 15(3), 97–102. https://ejurnal.ulbi.ac.id/index.php/informatika/article/view/3122%0Ahttps://ejurnal.ulbi.ac.id/index.php/informatika/article/download/3122/1195
Hasanudin, C., Wagiran, W., & Subyantoro, S. (2021). Evaluasi Perkuliahan Daring Keterampilan Menulis selama Masa Pandemi Covid-19 dengan Model Evaluasi CIPP. Jurnal Pendidikan Edutama, 8(2), 27. https://doi.org/10.30734/jpe.v8i2.1784
Hasym, I. E., & Susilawati, I. (2021). Klasifikasi Jenis Ikan Cupang Menggunakan Algoritma Principal Component Analysis (PCA) Dan K-Nearest Neighbors (KNN). KONSTELASI: Konvergensi Teknologi Dan Sistem Informasi, 1(1), 168–179. https://doi.org/10.24002/konstelasi.v1i1.4242
Jaya, K., Saputra, I. N., & Wijaya, W. (2019). Pengembangan sistem evaluasi kinerja dosen (e-kuesioner) stmik stikom indonesia. Jurnal Sains Dan Tek, 8(1).
Lapi, Z., Yunus, M., & Hamid, S. (2021). The Implementation of Student Facilitator and Explaining Learning Model using Vlog Media to Improve the Creativity and Learning Outcomes of Students in Social Studies Subject at Panakkukang District, Makassar City. Bosowa Journal of Education, 2(1), 65–72. https://doi.org/10.35965/bje.v2i1.1166
Mexda, J. A. P., & Mukhaiyar, R. (2021). Evaluasi Pembelajaran Daring Pada Perkuliahan Di Laboratorium Dasar Dan Pengukuran Unp. Journal of Multidicsiplinary Research and Development, 4(1), 1–12. https://ranahresearch.com.
Multazam, M., Samsumar, L. D., & Arwidiyarti, D. (2018). Rancang Bangun Sistem Informasi Evaluasi Kinerja Dosen Dalam Perkuliahan untuk Meningkatkan Kualitas Proses Pembelajaran. Jurnal Teknologi Informasi Dan Komunikasi, 7(2), 74–87.
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(2), 697–711.
Nurjanah, N., & Nurfitriani, N. (2020). Pengembangan assesment pembelajaran berbasis wondershare quiz qreator dalam evaluasi perkuliahan materi pembelajaran Bahasa Sastra Indonesia. Jurnal Penelitian Dan Evaluasi Pendidikan, 8(1), 1–12. https://jurnal.ustjogja.ac.id/index.php/wd/article/view/8486
Nurmitasari, N., Astuti, R., & Sutriningsih, N. (2020). Design Media Pembelajaran Matematika Sd Mathbibul Alaihisalam Di Era Covid-19. JURNAL E-DuMath, 6(2), 66–72. https://doi.org/10.52657/je.v6i2.1301
Okpatrioka. (2023). Research And Development ( R & D ) Penelitian Yang Inovatif Dalam Pendidikan. Jurnal Pendidikan, Bahasa Dan Budaya, 1(1), 86–100.
Pranajaya, A. E., & Febriansyah, R. (2021). Penerapan Algoritma K-Nearest Neighbor Untuk Mengukur Tingkat Kepuasan Terhadap Pelayanan Samsat Bandar Lampung. Ilmu Data, 2(1), 1–15.
Putri, H., Purnamasari, A. I., Dikananda, A. R., Nurdiawan, O., & Anwar, S. (2021). Penerima Manfaat Bantuan Non Tunai Kartu Keluarga Sejahtera Menggunakan Metode NAÏVE BAYES dan KNN. Building of Informatics, Technology and Science (BITS), 3(3), 331–337. https://doi.org/10.47065/bits.v3i3.1093
Putry, N. M., & Sari, B. N. (2022). Komparasi Algoritma Knn Dan Naïve Bayes Untuk Klasifikasi Diagnosis Penyakit Diabetes Mellitus. EVOLUSI : Jurnal Sains Dan Manajemen, 10(1). https://doi.org/10.31294/evolusi.v10i1.12514
Rahmat Hidayat. (2022). Pemanfaatan Data Mining Untuk Melihat Minat Siswa Setelah Menyelesaikan Pendidikan Sekolah Menengah Atas (Sma) Dengan Algoritma K-Means Clustering. Technology and Informatics Insight Journal, 1(2), 85–97. https://doi.org/10.32639/tiij.v1i2.220
Rajagukguk, K. P., Lubis, R. R., Kirana, J., & Rahayu, N. S. (2021). Pelatihan Pengembangan Media Pembelajaran Model 4D Pada Guru Sekolah Dasar. Jurnal Pengabdian Kepada Masyarakat, 2(1), 14–22. https://jurnal.stkipalmaksum.ac.id/index.php/jpkm/article/view/144
Ramadhani, N., & Fajarianto, N. (2020). Sistem informasi evaluasi perkuliahan dengan sentimen analisis menggunakan naïve bayes dan smoothing laplace. JSINBIS (Jurnal Sistem Informasi Bisnis), 10(2), 228–234.
Rudini, M., & Saputra, A. (2022). Kompetensi Pedagogik Guru Dalam Memanfaatkan Media Pembelajaran Berbasis TIK Masa Pandemi Covid-19. Aksara: Jurnal Ilmu Pendidikan Nonformal, 8(2), 841. https://doi.org/10.37905/aksara.8.2.841-852.2022
Taqwa, M. R. A., Yasrina, A., Darmawan, A., Kurniawan, F., & Pramudia, R. P. (2020). Monitoring dan Evaluasi Perkuliahan di Jurusan Fisika Universitas Negeri Malang. Briliant: Jurnal Riset Dan Konseptual, 5(1), 61. https://doi.org/10.28926/briliant.v5i1.425
Downloads
Published
How to Cite
Issue
Section
License
Jurnal Teknologi Pendidikan is an Open Access Journal. The authors who publish the manuscript in Jurnal Teknologi Pendidikan agree to the following terms.
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.