Automated Assessment of Students' Attitudes and Academic Resilience Through Learning Management System Data Integration

Authors

  • Dianti Eka Aprilia Department of Informatics, Universitas Muhammadiyah Bandung, Bandung, Indonesia
  • Sutadi Triputra Department of Informatics, Universitas Muhammadiyah Bandung, Bandung, Indonesia
  • Rika Dwi Agustiningsih Department of Psychology, Universitas Muhammadiyah Bandung, Bandung, Indonesia
  • Aila Gema Safitri Department of Informatics, Universitas Muhammadiyah Bandung, Bandung, Indonesia

DOI:

https://doi.org/10.21009/jtp.v26i3.51055

Keywords:

LMS, Moodle, e-learning, student attitudes, academic resilience, learning behavior

Abstract

One of the online platforms used to support learning activities is the Learning Management System (LMS). LMS supports the evaluation of cognitive aspects but not affective ones. As learning is mostly asynchronous, it presents challenges for lecturers in assessing students' attitudes. However, LMS generates data that can potentially be used to evaluate student attitudes and academic resilience. With the system log on the LMS, we can process data into information on the level of understanding, learning attitude, and persistence of students. This research is related to the design of an analytic dashboard that is integrated with LMS using Moodle. The dashboard will display an evaluation of student learning activities from the attitudinal aspects of motivation, discipline, responsibility, and academic resilience aspects consisting of persistence, reflecting and asking for help, and negative affect and emotional response. The study involved 160 new students, with data collected from 130 participants. The method used is a Research and Development (R&D) approach, which includes three stages: introduction, development, and testing. Data triangulation was used for validation by comparing online assessments with student self-evaluations. The final stage visualizes the results of system log analysis through the analytic dashboard. Findings showed that motivation scores from self-assessment correlated with LMS data, while discipline and responsibility assessments yielded different results. Academic resilience measures also showed discrepancies between student and mentor assessments. This research highlights the potential to visualize affective learning aspects within LMS platforms, providing lecturers with valuable insights into both cognitive and affective dimensions of student performance.

References

Afriyeni, N., Rahayuningsih, T., & Erwin, E. (2021). Resiliensi Akademik dengan Kepuasan Belajar Online pada Mahasiswa. Psychopolytan : Jurnal Psikologi, 5(1). https://doi.org/10.36341/psi.v5i1.1550

Alturki, U., & Aldraiweesh, A. (2021). Application of learning management system (Lms) during the covid-19 pandemic: A sustainable acceptance model of the expansion technology approach. Sustainability (Switzerland), 13(19). https://doi.org/10.3390/su131910991

Andersen, L. P., & Mikkelsen, K. L. (2008). Recall of occupational injuries: A comparison of questionnaire and diary data. Safety Science, 46(2). https://doi.org/10.1016/j.ssci.2007.06.014

Arikunto, S. (2013). Prosedur Penelitian Suatu Pendekatan Praktik Penelitian : Suatu Pendekatan Praktik. In Jurnal Universitas Udayana. ISSN (Vol. 2302). Rineka Cipta.

Bariyyah, K., Hastini, R. P., & Wulan Sari, E. K. (2018). Konseling Realita untuk Meningkatkan Tanggung Jawab Belajar Siswa. Konselor, 7(1). https://doi.org/10.24036/02018718767-0-00

Conrath, D. W., Higgins, C. A., & McClean, R. J. (1983). A comparison of the reliability of questionnaire versus diary data. Social Networks, 5(3). https://doi.org/10.1016/0378-8733(83)90031-X

Depdikbud. (2021). Kamus Besar Bahasa Indonesia. Balai Pustaka, 2(Jakarta).

Dewirati Juita, B., Susanti, R. H., Permatasari, D., Bimbingan, P., Fakultas, K., & Malang, K. (2021). Upaya Meningkatkan Tanggung Jawab Akademik Mahasiswa Manggarai Universitas PGRI Kanjuruhan Malang Melalui Konseling Kelompok Realita. JKI (Jurnal Konseling Indonesia), 6(2).

Ghufron, A. (2011). Pendekatan Penelitian dan Pengembangan (R&D) di Bidang Pendidikan dan Pembelajaran. Cakrawala Pendidikan.

Harandi, S. R. (2015). Effects of e-learning on Students’ Motivation. Procedia - Social and Behavioral Sciences, 181. https://doi.org/10.1016/j.sbspro.2015.04.905

Hart, A., & Becky, H. (2015). Resilience approaches to supporting young people’s mental health: Appraising the evidence base for schools and communities. Physical Education and Sport for Children and Youth with Special Needs Researches – Best Practices – Situation, 1(September).

Korneenko, T. N. (2019). Reflexive methods of knowledge in educational activities: Phenomenological hermeneutics. Obrazovanie i Nauka, 21(6). https://doi.org/10.17853/1994-5639-2019-6-29-45

López-Zambrano, J., Lara, J. A., & Romero, C. (2020). Towards portability of models for predicting students’ final performance in university courses starting from moodle logs. Applied Sciences (Switzerland), 10(1). https://doi.org/10.3390/app10010354

Makumane, M. A. (2023). Students’ perceptions on the use of LMS at a Lesotho university amidst the COVID-19 pandemic. African Identities, 21(2). https://doi.org/10.1080/14725843.2021.1898930

Raza, S. A., Qazi, W., Khan, K. A., & Salam, J. (2021). Social Isolation and Acceptance of the Learning Management System (LMS) in the time of COVID-19 Pandemic: An Expansion of the UTAUT Model. Journal of Educational Computing Research, 59(2). https://doi.org/10.1177/0735633120960421

Rikumahu, M. C. E., & Rahayu, M. N. M. (2022). Resiliensi Akademik Pada Mahasiswa: Bagaimana Kaitannya Dengan Optimisme Selama Masa Pembelajaran Daring? Psikoborneo: Jurnal Ilmiah Psikologi, 10(3). https://doi.org/10.30872/psikoborneo.v10i3.8467

Rutter, M. (1999). Resilience concepts and findings: Implications for family therapy. Journal of Family Therapy, 21(2). https://doi.org/10.1111/1467-6427.00108

Safitri, A. G., Hutabarat, M. T., Tresnawati, D., Afriani, & Pannen, P. (2023). Design of student character development model based on the habituation method on a mobile device platform. In Education Technology in the New Normal: Now and Beyond (pp. 145–152). https://doi.org/10.1201/9781003353423-5

Santoso, M. M., Reziana, B., Yusuf, M., Irawan, D., & Ashari, H. (2023). Implementasi Penggunaan Teknologi Informasi dan Komunikasi untuk Penilaian Kognitif pada Pembelajaran PAI Di Sekolah Dasar. Jurnal Basicedu, 7(5). https://doi.org/10.31004/basicedu.v7i5.4669

Siregar, L. Y. S. (2020). MOTIVASI SEBAGAI PENGUBAHAN PERILAKU. FORUM PAEDAGOGIK, 11(2). https://doi.org/10.24952/paedagogik.v12i2.3156

Sun, G. X., & Bin, S. (2018). Construction of learning behavioral engagement model for MOOCs platform based on data analysis. Kuram ve Uygulamada Egitim Bilimleri, 18(5). https://doi.org/10.12738/estp.2018.5.120

Zhang, P., Wang, W., & Zeng, C. Z. (2020). Construction of a learning behaviour tracking analysis model for a MOOC online education platform. International Journal of Continuing Engineering Education and Life-Long Learning, 30(2). https://doi.org/10.1504/IJCEELL.2020.106348

Zhang, Y., Ghandour, A., & Shestak, V. (2020). Using Learning Analytics to Predict Students Performance in Moodle LMS. International Journal of Emerging Technologies in Learning, 15(20). https://doi.org/10.3991/ijet.v15i20.15915

Downloads

Published

2024-12-30

How to Cite

Dianti Eka Aprilia, Sutadi Triputra, Rika Dwi Agustiningsih, & Aila Gema Safitri. (2024). Automated Assessment of Students’ Attitudes and Academic Resilience Through Learning Management System Data Integration . JTP - Jurnal Teknologi Pendidikan, 26(3), 1066–1075. https://doi.org/10.21009/jtp.v26i3.51055