BURIED WAVEGUIDE POLYMETHYLMETHACRYLATE MODELING FOR REFRACTIVE INDEX SENSOR APPLICATION USING FINITE ELEMENT METHOD

Authors

  • Ian Yulianti
  • Jauhar Azka
  • Ngurah Made Darma Putra
  • Budi Astuti

DOI:

https://doi.org/10.21009/SPEKTRA.043.04

Keywords:

buried waveguide, refractive index sensor, finite element methods

Abstract

The purpose of this study is to obtain the optimum buried waveguide structure through modeling for refractive index sensor applications. The waveguide cladding material used as Polymethylmethacrylate (PMMA). The core cross-section size was 1 × 1 mm2. The simulation was carried out at a wavelength of 650 nm using the Finite Element Method (FEM). The parameter of the buried waveguide optimized in this model was the core refractive index and the thickness of the upper cladding to obtain a high propagation constant and good sensitivity to refractive index. Modeling was done for various core refractive index values ​​varied in the range of 1.52 to 1.59, which are the refractive index of various types of polymers. To optimize the sensitivity, the thickness of the upper cladding was varied between 0.125mm to 0.5mm. Besides, a simulation was also carried out for a waveguide without an upper cladding. The results show that the optimum waveguide is a waveguide without upper cladding using polyester as core material with a refractive index value of 1.57 and a sensitivity of 4.9 × 10-10rad /m. RIU.

References

[1] N. A. M. Zainuddin, M. M. Ariannejad, P. T. Arasu, S. W. Harun, and R. Zakaria, “Investigation of cladding thicknesses on silver SPR based side-polished optical fiber refractive-index sensor,” Results Phys., vol. 13, p. 102255, Jun. 2019.
[2] X. Jiang and Q. Wang, “Refractive index sensitivity enhancement of optical fiber SPR sensor utilizing layer of MWCNT/PtNPs composite,” Opt. Fiber Technol., vol. 51, pp. 118–124, Sep. 2019.
[3] R. Nasirifar, M. Danaie, and A. Dideban, “Dual channel optical fiber refractive index sensor based on surface plasmon resonance,” Optik (Stuttg)., vol. 186, pp. 194–204, Jun. 2019.
[4] W. Du and F. Zhao, “Surface plasmon resonance based silicon carbide optical waveguide sensor,” Mater. Lett., vol. 115, pp. 92–95, Jan. 2014.
[5] G. C. Yadav et al., “Fabrication of a metal clad planar polymer waveguide based sensor for detection of low-refractive-index-contrast of liquid,” Optik (Stuttg)., vol. 138, pp. 289–294, Jun. 2017.
[6] Y. Chen, H. Ren, and T. Tang, “Optical-waveguide-based temperature sensor applied in intelligent buildings,” Opt. - Int. J. Light Electron Opt., vol. 124, no. 22, pp. 5628–5630, Nov. 2013.
[7] Y. Fan, Y. Ding, H. Ma, N. Teramae, S. Sun, and Y. He, “Optical waveguide sensor based on silica nanotube arrays for label-free biosensing,” Biosens. Bioelectron., vol. 67, pp. 230–236, May 2015.
[8] B. Hooda and V. Rastogi, “Low cost highly sensitive miniaturized refractive index sensor based on planar waveguide,” Optik (Stuttg)., vol. 143, pp. 158–166, Aug. 2017.
[9] I. Yulianti, N. M. D. P., Y. Lestiyanti and O. Kurdi, "Optimization of Ridge Waveguide Structure for Temperature Sensor Application Using Finite Difference Method," MATEC Web of Conferences, vol. 159, no. 02020, pp. 1-6, 2018.
[10] G. R. Liu and N. T. Trung, Smoothed Finite Element, Boca Raton: CRC Press, 2010.
[11] K. Peters, "Polymer optical fiber sensors-a review," Smart Materials and Structures, vol. 20, no. 013002, p. 17, 2011.
[12] Wang, M., Hiltunen, J. & Myllylä, R., 2013. Refractive index sensing in aqueous environment using three different polymeric waveguide interferometers. 3rd International Topical Meeting on Optical Sensing and Artificial Vision, pp. 166-171.
[13] Rezem, M. et al., 2016. Fabrication and sensing applications of multilayer polymer optical waveguides. Procedia Technology, Volume 26, pp. 517-523.
[14] Wang, L., Ren, K., Bao, S. & Kaixin, C., 2018. Highly Sensitive Refracive Index Sensor Based on Polymer Long-Period Waveguide Grating With Liquid Cladding. Photonic Sensors, pp. 1-6.
[15] Kim, J.-W., Kim, K.-J., Yi, J.-A. & Oh, M.-C., 2010. Polymer waveguide label-free biosensors with enhanced sensitivity by incorporating low-refractive-index polymers. IEEE Journal of Selected Topics in Quantum Electronics, 16(4), pp. 973-980.
[16] Khatri, A., Punjabi, N., Dhawangale, A. & Mukherji, S., 2016. Inexpensive polyester sheet based waveguides for detection of cardiac biomarker, myeloperoxidase. Procedia Engineering, Issue 168, pp. 125-128.
[17] Mishra, S. K., Zou, B. & Chiang, K. S., 2016. Surface-plasmon-resonance refractive-index sensor with Cu-coated polymer waveguide. IEEE Photonics Technology Letters, pp. 1-4.
[18] Boiragi, I. et al., 2009. SU-8 Polymer based waveguide biochemical sensor for medical diagnostic application. International Conference on Optics and Photonics, pp. 1-5

Downloads

Published

2019-12-30

How to Cite

Yulianti, I., Azka, J., Darma Putra, N. M., & Astuti, B. (2019). BURIED WAVEGUIDE POLYMETHYLMETHACRYLATE MODELING FOR REFRACTIVE INDEX SENSOR APPLICATION USING FINITE ELEMENT METHOD. Spektra: Jurnal Fisika Dan Aplikasinya, 4(3), 133–142. https://doi.org/10.21009/SPEKTRA.043.04