CHARACTERIZATION OF (Mg0.6Zn0.4)TiO3 CERAMICS AS DIELECTRIC RESONATOR MATERIALS IN MICROWAVE FREQUENCIES

Authors

  • Syah Nanta Maulana Ishak Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya
  • Frida Ulfah Ermawati Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya

DOI:

https://doi.org/10.21009/SPEKTRA.071.02

Keywords:

(Mg0.6Zn0.4)TiO3 ceramic, resonant frequency, dielectric resonator material, structure, microstructure

Abstract

Ceramics based on magnesium titanate (MgTiO3) are dielectric materials that have the potential to be used in telecommunications systems at microwave frequencies, such as filters, antennas, and signal generators. This study aims to characterize the resonant frequency and output power of (Mg0.6Zn0.4)TiO3 ceramics (abbreviated MZT04) as a dielectric resonator (DR) material in a DRO circuit and relate it to the structure, microstructure, and bulk density data of the ceramics. The MZT04 ceramics were fabricated by compacting MZT04 powder at a pressure of 2.5 MPa using a cylindrical die press of 5 mm in diameter to become pellets with the same diameter. The pellets were sintered at 1300 ℃ by varying holding time for 6, 8, and 10 h to become ceramics. Data on the structure of the ceramics were obtained from the X-Ray Diffraction (XRD) pattern with Cu-Kα radiation which showed that the three ceramics contained MgTiO3 phase, each 87.02; 90.55; and 87.40 % molar, the rest % is MgO and TiO2 rutile phases. The increase in sinter holding time has increased the unit cell volume of the MgTiO3 phase from (307.94), (308.61), to (308.94) Å3; the size of the lattice parameters (a=b, c) also increased from (5.057, 13.903) Å, (5.058, 13.903) Å, to (5.061, 13.914) Å; like wise, the bulk density increased from 2.51, 2.82, and 3.04 g/cm3. As a DR material, the three ceramics exhibit a resonant frequency signal each at 5.20; 5.21; and 5.22 GHz with the output power of -19.70; -14.47; -15.70 dBm, and the FWHM of the signal is 59.3; 61.6; and 61.2 MHz. Therefore, MZT04 ceramics can be applied as the DR material in microwave frequencies, especially at ~5.20 GHz. The variations in sinter holding time is not significant effect on the position of the resonant frequency.

References

[1] S. Wu et al., “Effect of Bi2O3 Additive on the Microstructure and Dielectric Properties of BaTiO3 Based Ceramics Sintered at Lower Temperature,” J. Mater. Sci. Technol, vol. 26, pp. 472-476, 2010, DOI: 10.1016/S1005-0302(10)60075-8.
[2] M. Zhang et al., “Structure and Properties Analysis for MgTiO3 and (Mg0.97M0.03)TiO3 (M = Ni, Zn, Co, and Mn) Microwave Dielectric Materials,” J. Alloys Compd, vol. 537, pp. 76-79, October 2012, DOI: 10.1016/j.jallcom.2012.05.026.
[3] J. Zhang et al., “MgTiO3/TiO2/MgTiO3: An ultrahigh-Q and Temperature-stable Microwave Dielectric Ceramic Through Cofired Trilayer Architecture,” Ceram. Int., vol. 44, no. 17, pp. 21000-21003, 2018, DOI: https://doi.org/10.1016/j.ceramint.2018.08.135.
[4] Y. M. Miao et al., “Low-temperature Synthesis of Nano-crystalline magnesium titanate materials by the sol-gel method,” Mater. Sci. Eng. B, vol. 128, no. 1, pp. 103-106, 2006, DOI: https://doi.org/10.1016/j.mseb.2005.11.019.
[5] S. H. Lin, C. H. Shen and C. C. Ho, “Dielectric Performance and Physical Characterization of (Mg0.6Zn0.4)0.95Ni0.05TiO3 ceramics with ATiO3 (A = Ca, Sr) Additions for Microwave Applications,” J. Mater. Sci. Electron, vol. 32, no. 23, pp. 27913-27922, 2021, DOI: 10.1007/s10854-021-07172-y.
[6] Y. C. Liou and S. L. Yang, “Calcium-doped MgTiO3–MgTi2O5 Ceramics Prepared using a Reaction-sintering Process,” Mater. Sci. Eng. B, vol. 142, no. 2, pp. 116-120, 2007, DOI: https://doi.org/10.1016/j.mseb.2007.06.027.
[7] H. Wang et al., “Sintering Behavior and Microwave Dielectric Properties of MgTiO3 Ceramics Doped with B2O3 by Sol-Gel Method,” J. Mater. Sci. Technol., vol. 28, no. 8, pp. 751-755, 2012, DOI: https://doi.org/10.1016/S1005-0302(12)60125-X.
[8] M. K. Suresh et al., “Synthesis of Nanocrystalline Magnesium Titanate by an Auto-igniting Combustion Technique and its Structural, Spectroscopic and Dielectric Properties,” Mater. Res. Bull., vol. 45, no. 7, pp. 761-765, 2010, DOI: https://doi.org/10.1016/j.materresbull.2010.03.019.
[9] Y. F. Deng et al., “Synthesis of Magnesium Titanate Nanocrystallites from a Cheap and Water-soluble Single-source Precursor,” Inorganica Chim. Acta, vol. 363, pp. 827-829, 2010, DOI: 10.1016/j.ica.2009.11.020.
[10] N. Santha, M. Rakhi and S. Ganesanpotti, “Fabrication of High-quality Factor Cold Sintered MgTiO3–NaCl Microwave Ceramic Composites,” Mater. Chem. Phys., vol. 255, p. 123636, 2020, DOI: 10.1016/j.matchemphys.2020.123636.
[11] I. Wibisono, “Perancangan Dielektrik Resonator Oscillator Untuk MOBILE WIMAX Pada Frekuensi 2,3 GHz Dengan Penambahan Coupling lambda/4,” 2010.
[12] T. Firmansyah and G. Wibisono, “Penerapan Metode Monte-Carlo untuk Analisis Toleransi Perubahan Nilai Komponen Terhadap Kinerja Osilator Frekuensi 2,3 GHz,” J. Rekayasa Elektr., vol. 12, p. 92, 2017, doi: 10.17529/jre.v12i3.5564.
[13] O. Kizilbey, O. Palamutcuogullari and B. S. Yarman, “Design of Low Phase Noise 7.7 GHz Dielectric Resonator Oscillator,” ELECO 2013 - 8th Int. Conf. Electr. Electron. Eng., pp. 591-594, November 2013, DOI: 10.1109/eleco.2013.6713914.
[14] A. Warburton, “A Phase Tuned, Fixed Frequency Dielectric Resonator Oscillator Design,” in European Microwave Conference, vol. 1, pp. 4, 2005, DOI: 10.1109/EUMC.2005.1608830.
[15] J. Lee, Y. T. Lee and S. Nam, “A Phase Noise Reduction Technique in Microwave Oscillator using a High-Q Active Filter,” IEEE Microw. Wirel. Components Lett., vol. 12, pp. 426-428, 2002.
[16] R. R. Jones and V. H. Estrick, “Low Phase Noise Dielectric Resonator Oscillator,” 44th Annu. Symp. Freq. Control, pp. 549-554, 1990.
[17] N. Mahyuddin et al., “Modeling of a 10GHz Dielectric Resonator Oscillator in ADS,” 2006.
[18] L. Izza and F. U. Ermawati, “Characterization of (Mg1.0Zn0.0)TiO3+4 wt%Bi2O3 Ceramics for Application as Resonator in Dielectric Resonator Oscillator Circuit,” J. ILMU Fis., Univ. ANDALAS, vol. 13, no. 2, pp. 62-69, Mar. 2021, DOI: 10.25077/jif.13.2.62-69.2021.
[19] U. Frida et al., “Blok Diagram Sirkuit DRO dan Blok Diagram Pengukuran Frekuensi Respon dan Daya Luaran DRO Pada C-Band untuk Keramik Dielektrik (Mg1−xZnx)TiO3.,” Modul. Sertifikat Hak Cipta RI, No. Pencatatan 000203671 Tahun 2020, 2020.
[20] M. Jacob et al., “Dielectric Characterization of Barium Fluoride at Cryogenic Temperatures using TE011 and Quasi TE0mn Mode Dielectric Resonators,” Cryogenics (Guild)., vol. 46, pp. 730-735, 2006, DOI 10.1016/j.cryogenics.2006.06.004.
[21] A. Kadarosman and F. U. Ermawati, “The use of (Mg0.9Zn0.1)TiO3+2wt.% Bi2O3 Ceramics as a Dielectric Resonator Oscillator Material and Characterisation of Structure, Microstructure, and Density,” J. Neutrino, vol. 13, no. 2, pp. 67-79, Jun. 2021, DOI: 10.18860/neu.v13i2.11720.
[22] E. Ishida et al., “Amorphous-Si Waveguide on a Garnet Magneto-optical Isolator with a TE Mode Nonreciprocal Phase Shift.,” Opt. Express, vol. 25, no. 1, pp. 452-462, Jan. 2017, DOI: 10.1364/OE.25.000452.
[23] L. Sánchez, S. Lechago and P. Sanchis, “Ultra-compact TE and TM Pass Polarizers Based on Vanadium Dioxide on Silicon.,” Opt. Lett., vol. 40, no. 7, pp. 1452-1455, Apr. 2015, DOI: 10.1364/OL.40.001452.
[24] R. Yamaguchi, Y. Shoji and T. Mizumoto, “Low-loss Waveguide Optical Isolator with Tapered Mode Converter and Magneto-optical Phase Shifter for TE Mode Input,” Opt. Express, vol. 26, no. 16, pp. 21271-21278, 2018, DOI: 10.1364/OE.26.021271.
[25] Skyworks, “Properties, Test Methods, and Mounting of Dielectric Resonators,” p. 2, 2017, [Online]. Available: https://cm-sitecore.skyworksinc.com/-/media/SkyWorks/Documents/Products/2501-2600/Properties_and_Mounting_of_Dielectric_Resonators_202803B. pdf. Retrieved February 11, 2020.
[26] K. Wang et al., “Solid-state Reaction Mechanism and Microwave Dielectric Properties of 0.95MgTiO3–0.05CaTiO3 ceramics,” J. Mater. Sci. Mater. Electron., vol. 29, 2018, DOI: 10.1007/s10854-017-8111-z.
[27] F. U. Ermawati et al., “Preparation and Structural Study of Mg1−xZnxTiO3 Ceramics and their Dielectric Properties from 1 Hz to 7.7 GHz,” J. Mater. Sci. Mater. Electron., vol. 27, no. 7, pp. 6637-6645, 2016, DOI: 10.1007/s10854-016-4610-6.
[28] V. G. Anugraha and Widyastuti, “Pengaruh Komposisi Sn dan Variasi Tekanan Kompaksi terhadap Densitas dan Kekerasan Komposit Cu-Sn untuk Aplikasi Proyektil Peluru Frangible dengan Metode Metalurgi Serbuk,” J. Tek. Pomits, vol. 3, no. 1, pp. 102-107, 2014.
[29] B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction,” Third Edition, New York: Prentice-Hall, 2001.
[30] F. U. Ermawati, “The Response of (Mg0.6Zn0.4)TiO3 Ceramic System as A Dielectric Resonator Oscillator at C-Band,” J. Phys. Conf. Ser., vol. 1805, no. 1, p. 12039, Mar. 2021, DOI: 10.1088/1742-6596/1805/1/012039.
[31] R. S. Molla, “A study on Manufacturing of Deformed Bar (G 60-400W) at Elite Iron and Steel Industries.” 2018, DOI: 10.13140/RG.2.2.24320.33289.
[32] F. U. Ermawati, “Struktur Kristal Bahan Keramik,” Surabaya: Unesa University Press, 2019.
[33] Teck.com, “Zinc Metal Safety Data Sheet,” Trail, British Columbia, 2018. [Online]. Available: https://www.teck.com/media/Zinc-Metal-2018-SDS-.pdf.
[34] F. Z. Teng, “Magnesium,” in Encyclopedia of Earth Sciences Series, pp. 853-856, 2018.
[35] N. Rettiningtyas and F. U. Ermawati, “Sintesis dan Fabrikasi Keramik (Mg0,8Zn0,2)TiO3 + 2 wt% Bi2O3 Sebagai Bahan Dielektrik Serta Karakterisasi Struktur dan Densitasnya Akibat Variasi Waktu Tahan Sinter,” Inov. Fis. Indones., vol. 9, pp. 25-33, 2020, [Online].
Available: https://jurnalmahasiswa.unesa.ac.id/index.php/6/article/view/33811.
[36] A. Johan and R. Ramlan, “Karakterisasi Konduktivitas, Porositas dan Densitas Bahan Keramik Na-β”-Al2O3 dari Komposisi Na2O 13% dan Al2O3 87% dengan Variasi Waktu Penahanan,” J. Penelit. Sains, vol. 11, no. 3, 2008, doi: 10.36706/jps.v11i3.395.

Downloads

Published

2022-04-30

How to Cite

Maulana Ishak, S. N., & Ermawati, F. U. (2022). CHARACTERIZATION OF (Mg0.6Zn0.4)TiO3 CERAMICS AS DIELECTRIC RESONATOR MATERIALS IN MICROWAVE FREQUENCIES. Spektra: Jurnal Fisika Dan Aplikasinya, 7(1), 11–28. https://doi.org/10.21009/SPEKTRA.071.02