A COMBINED METHOD OF 1D AND 2D RESISTIVITY FOR GROUNDWATER LAYER ESTIMATION AT A FARMING AREA IN REJOMULYO VILLAGE

Authors

  • Risky Martin Antosia Department of Geophysical Engineering, Sumatera Institute of Technology, Jalan Terusan Ryacudu, Way Huwi, Jati Agung, Kabupaten Lampung Selatan, Lampung, Indonesia
  • Muhammad Ramdan Department of Geophysical Engineering, Sumatera Institute of Technology, Jalan Terusan Ryacudu, Way Huwi, Jati Agung, Kabupaten Lampung Selatan, Lampung, Indonesia

DOI:

https://doi.org/10.21009/SPEKTRA.081.04

Keywords:

groundwater layer, resistivity method, Schlumberger, Wenner

Abstract

The groundwater depends on when it is available, more in the rainy and less in the dry seasons. Fluctuation in water availability is a significant problem in activities continuously requiring large amounts of water, such as agriculture. Hence, it is necessary to increase the number of water resources to meet the community's needs. Therefore, the groundwater layer zone was estimated as an initial study at the dry farmland in Rejomulyo village, Jati Agung district, South Lampung, using a combined method between the 1D resistivity method of the Schlumberger array and the 2D form of the Wenner configuration. Each sounding point and the 2D line have a maximum stretch length of 300 m. The 1D outcome correlates to the 2D data processing result to produce a subsurface lithology model. As a result, the research area has three primary layers with three rock types. The first layer has a resistivity value of less than 20 Ωm and is identified as tuffaceous clay. Then the second layer with a resistivity range of 60–66 Ωm is tuffaceous sand, this rock which is referred to as the groundwater layer with a depth of 11-40 m. The last layer has a high resistivity value of 120–141 Ωm as tuff. Based on the results of 3D visualization, the groundwater layer in the study area spreads to the southeast with a confined aquifer type. This targeted rock layer can be utilized for groundwater production.

References

[1] T. K. Nufutomo, F. C. Alam and A. H. Kiranaratri, “Kualitas Air Embung untuk Irigasi di Margodadi, Lampung Selatan,” Media Ilmiah Teknik Lingkungan, vol. 5, no. 2, pp. 101-107, 2020, doi: 10.33084/mitl.v5i2.1640.
[2] D. Sedana, A. As’ari and A. Tanauma, “Pemetaan Akuifer Air Tanah di Jalan Ringroad Kelurahan Malendeng dengan Menggunakan Metode Geolistrik Tahanan Jenis,” Jurnal Ilmiah Sains, vol. 15, no. 1, p. 33, 2015, doi: 10.35799/jis.15.1.2015.6778.
[3] R. M. Antosia et al., “Peninjauan Ulang Kedalaman Akuifer Menggunakan Metode Resistivitas 1D di Desa Gayau, Kabupaten Pesawaran,” Jurnal Abdi Masyarakat Indonesia, vol. 2, no. 2, pp. 651-660, 2022, doi: 10.54082/jamsi.309.
[4] J. M. Reynolds, “An Introduction to Applied and Environmental Geophysics,” John Wiley & Sons, 2011, [Online], Available: www.wiley.com/go/reynolds/introduction2e.
[5] W. M. Telford, L. P. Geldart and R. E. Sheriff, “Applied Geophysics,” Cambridge University Press, 1990.
[6] A. S. Wijaya, “Aplikasi Metode Geolistrik Resistivitas Konfigurasi Wenner Untuk Menentukan Struktur Tanah di Halaman Belakang SCC ITS Surabaya,” Jurnal Fisika Indonesia, vol. 19, no. 55, pp. 1-5, 2015, doi: 10.22146/jfi.24363.
[7] R. M. Antosia, “Voltmeter Design Based on ADS1115 and Arduino Uno for DC Resistivity Measurement,” JTERA (Jurnal Teknologi Rekayasa), vol. 5, no. 1, pp. 73-80, 2020, doi: 10.31544/jtera.v5.i1.2019.73-80.
[8] A. Farduwin et al., “Inversi Data Geolistrik Menggunakan Particle Swarm Optimization: Studi Kasus Desa Gayau,” JGE (Jurnal Geofisika Eksplorasi), vol. 7, no. 2, pp. 88-99, 2021, doi: 10.23960/jge.v7i2.118.
[9] A. Y. Paembonan et al., “Investigasi Air Tanah Berdasarkan Nilai Resistivitas di Dusun Jatisari, Kabupaten Lampung Selatan,” JGE (Jurnal Geofisika Eksplorasi), vol. 7, no. 2, pp. 100-110, 2021, doi: 10.23960/jge.v7i2.117.
[10] Rizka and S. Satiawan, “Investigasi Lapisan Akuifer Berdasarkan Data Vertical Electrical Sounding (VES) dan Data Electrical Logging; Studi Kasus Kampus Itera,” Bulletin of Scientific Contribution: Geology, vol. 17, no. 2, pp. 91-100, 2019, [Online], Available: http://jurnal.unpad.ac.id/bsc.
[11] J. Asfahani, “Review on the role of geoelectrical surveys in characterizing and deriving the constraints and hydrogeological conditions in semi arid Khanasser Valley region in Syria,” Contributions to Geophysics and Geodesy, vol. 49, no. 1, pp. 37-66, 2019, doi: 10.2478/congeo-2019-0004.
[12] A. C. D. O. Braga, W. M. Filho and J. C. Dourado, “Resistivity (DC) method applied to aquifer protection studies,” Revista Brasileira de Geofisica, vol. 24, no. 4, pp. 573-581, 2006, doi: 10.1590/s0102-261x2006000400010.
[13] B. Santoso et al., “Penentuan Resistivitas Batubara Menggunakan Metode Electrical Resistivity Tomography dan Vertical Electrical Sounding,” Jurnal Material dan Energi Indonesia, vol. 6, no. 1, 2016.
[14] B. Wijatmoko, B. Santoso and E. Supriyana, “Kajian Struktur Resistivitas Dangkal di Sekitar Sumur Sindu Kecamatan Jatitujuh Kabupaten Majalengka,” Spektra: Jurnal Fisika dan Aplikasinya, vol. 1, no. 1, pp. 9-16, 2016, doi: 10.21009/SPEKTRA.
[15] R. M. Antosia et al., “Andesite prospect at West Sungkai of North Lampung: Its distribution based on electrical resistivity tomography,” in IOP Conference Series: Earth and Environmental Science, vol. 882, no. 1, p. 012086, 2021, doi: 10.1088/1755-1315/882/1/012086.
[16] A. Farduwin et al., “Identification of zeolite using electrical resistivity tomography in Campang Tiga, South Lampung Regency,” in IOP Conference Series: Earth and Environmental Science, 2021, doi: 10.1088/1755-1315/882/1/012046.
[17] S. Zulaikah et al., “Pengukuran Resistivitas dan Dielektrisitas Tanah Perkebunan Apel: Sebuah Langkah Awal dalam Studi Agrogeophysics,” Spektra: Jurnal Fisika dan Aplikasinya, vol. 16, no. 1, pp. 52-54, 2015.
[18] M. Souisa, L. Hendrajaya and G. Handayani, “Pencitraan Resistivitas Bidang Longsor di Perbukitan Booi dan Erie Kota Ambon Menggunakan Konfigurasi Wenner Schlumberger,” Spektra: Jurnal Fisika dan Aplikasinya, vol. 16, no. 2, pp. 1-5, 2015.
[19] Mahrizal, A. Fauzi and Akmam, “Teknologi Monitoring Geolistrik Time-Lapse untuk Memantau Daerah Rawan Longsor di Kota Padang,” Spektra: Jurnal Fisika dan Aplikasinya, vol. 1, no. 2, pp. 103-108, 2016, doi: 10.21009/SPEKTRA.
[20] Rizka et al., “The Identification of Krakatoa Tsunami Deposits Based on Comparison of Geological and Electrical Resistivity Tomography Method, in Kunjir, South Lampung,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, vol. 830, no. 1, p. 012026, 2021, doi: 10.1088/1755-1315/830/1/012026.
[21] E. Minarto, N. N. Christy and A. Ruchimat, “Identification of Groundwater Potential Using Wenner Configuration 2D Resistivity Method (Kupang, Nusa Tenggara Timur),” in Journal of Physics: Conference Series, vol. 1805, no. 1, p. 012034, 2021, doi: 10.1088/1742-6596/1805/1/012034.
[22] R. M. Antosia et al., “Pemanfaatan Metode Geolistrik 2 Dimensi dalam Mengidentifikasi Kemenerusan Lapisan Air Tanah di Dusun IID, Desa Jatimulyo, Kecamatan Jati Agung, Kabupaten Lampung Selatan,” Jurnal Abdi Masyarakat Indonesia, vol. 2, no. 2, pp. 753-762, 2022, doi: 10.54082/jamsi.324.
[23] S. Uhlemann et al., “Electrical resistivity tomography determines the spatial distribution of clay layer thickness and aquifer vulnerability, Kandal Province, Cambodia,” Journal of Asian Earth Sciences, vol. 147, pp. 402-414, 2017, doi: 10.1016/j.jseaes.2017.07.043.
[24] M. H. Loke, “Tutorial : 2-D and 3-D electrical imaging surveys,” pp. 29-31, 2023, [Online], Available: https://www.geotomosoft.com/coursenotes.zip.
[25] S. A. Mangga et al., “Peta Geologi Lembar Tanjungkarang, Sumatera,” Bandung: Pusat Survei Geologi, 2010.

Downloads

Published

2023-04-29

How to Cite

Antosia, R. M., & Ramdan, M. (2023). A COMBINED METHOD OF 1D AND 2D RESISTIVITY FOR GROUNDWATER LAYER ESTIMATION AT A FARMING AREA IN REJOMULYO VILLAGE. Spektra: Jurnal Fisika Dan Aplikasinya, 8(1), 43–54. https://doi.org/10.21009/SPEKTRA.081.04