Market Basket Analysis Menggunakan Algoritma Apriori: Kasus Transaksi 212 Mart Soebrantas Pekanbaru

Authors

  • Deni Rizaldi Universitas Riau
  • Arisman Adnan Prodi S1 Statistika, Jurusan Matematika, Universitas Riau

DOI:

https://doi.org/10.21009/JSA.05103

Keywords:

Data Mining, Market Basket Analysis, Algoritma Apriori, Transaksi Penjualan, Aturan Asosiasi

Abstract

Market Basket Analysis (MBA) merupakan salah satu teknik penemuan aturan asosiasi dalam data mining. MBA memanfaatkan data transaksi pada suatu toko untuk menentukan strategi penjualan. Konsep utama analisis ini adalah menentukan barang yang dibeli secara bersamaan oleh konsumen. Penentuan asosiasi dalam MBA berdasarkan kriteria minimum support dan confidence. Penelitian ini menggunakan algoritma apriori untuk data transaksi 212 Mart Soebrantas Pekanbaru periode Januari-Desember 2020. Algoritma apriori merupakan algoritma yang efisien untuk menentukan kandidat aturan asosiasi pada data dengan jumlah besar. Aturan asosiasi yang akan dibangkitkan adalah aturan asosiasi antar kelompok item dan asosiasi antar item. Berdasarkan hasil analisis ditemukan aturan asosiasi antar kelompok yang terbaik berdasarkan nilai lift tertinggi yaitu asosiasi antara clothing care dan body care dengan support 6,1% dan confidence 45,88 %. Aturan asosiasi terbaik untuk item yaitu asosiasi Lemonilo Mie Instan Ayam Bawang 7 dan Lemonilo Mie Instan Kari Ayam dengan support 0,17% dan confidence 42,11%.

Downloads

Published

2021-06-30

How to Cite

Rizaldi, D., & Adnan, A. (2021). Market Basket Analysis Menggunakan Algoritma Apriori: Kasus Transaksi 212 Mart Soebrantas Pekanbaru. Jurnal Statistika Dan Aplikasinya, 5(1), 31–40. https://doi.org/10.21009/JSA.05103